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I. INTROL JCTION AND LITERATURE SURVEY

A. Introduction

Cavitation bubbles referred to herein are approximately spher-
ical cavities or voids within a body of liquid where the behavior of the
interface of a bubble is governed primarily but not completely by the
inertia and pressure of the liquid. The bubbles are formed by suitably
superheating the liquid by means of lowering the liquid static pressure
below the vapor pressure while the bulk liquid temperature remains essen-
tially constant. The behavior of the interface after the bubble is
formed and starts to collapse and the behavior of the liquid adjacent to
the interface are the main concerns here.

A cavitating venturi was used in the work described here, but
there are many other hydraulic machines where similar liquid conditions
exist .o form cavitating flows. Among these are pumps, high speed marine
propellers, spillways and turbines at dams, hydrofoils, etc. If other
conditions are considered, where bubbles are formed by superheating the
liquid by raising its temperature to the boiling point while maintain-
ing essentially constant pressure, then the applications when such con-
ditions occur become innumerable. Among these are the multitudes of
boiling heat transfer applications, where the analysis concerns single
vapor bubbles growing in liquid at saturation temperatures and pressures.
A third area of investigation involves single bubbles containing mostly
gas other than the vapor of the liquid in which they exist. Such bubbles
may grow from solutions of gas in liquid as in carbonated beverages or
by injection of gas bubbles into the liquid as in injection cooling used

in cryogenics work.

~1-
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Some situations in which bubble behavior has recently become
particularly important involve nuclear reactors and nuclear particle
research. The application of nuclear reactors to high temperature liquid
metal Rankine-cycle power plants for use in space has initiated consi-
derable effort in cavitation research in regard to both cavitation damege
in pumps, valves, etc. and cavitation effects upon performance of such
components. High power density reactor cores, especially in fast reac-
tors, require liquid metal coolants to effectively remove the heat. The
performance of liquid metals in such situations where cavitation might
occur cannot be reliably predicted on the basis of any known scaling laws,
and in high performance systems cavitation damage may occur. For example,
in the Fermi sodium cooled f:st breeder reactor, pitting was observed on
the fuel element nozzle seats of the core support plate. A study indi-
cated that mis-seating of the nozzles permitted sodium flow across the
seats through a convergent-divergent passage as a venturi and thet, very
likely, cavitation damage occurred.

The related areas of bubble dynamics in the nucleation and
growth of wvapor and/or gas bubbles in radiation fields becomes important
when considering homogeneous liquid reactors and the evolution of radio-
lytic gases, especially during transient power operation. In water
cooled solid fuel reactors, the associated problem of bubble growth by
heat transfer at the fuel surface, with the attendant nuclear reactivity
effect, especially for rapid transient conditions, is closely related to
the pure cavitation bubble dynamics problems. The nucleation of bubbles

in a supersaturated liquid by passage of nuclear particles, as in the




familiar bubble chamber, is also a related bubble-dynamics phenomenon.
While all these areas of bubble investigation are related, the relative
significance of the various physical parameters involved changes with

the application, and only those parameters important in single cavitation

bubbles will be considered here.

B. Historical Recognition of Cavitation

One of the first references to the fact that rotating hydraulic
machinery might promote localized low pressure regions, in water which
would result in voids or cavities was made by Leonhard Euler in l75h(l).
In 1894 Reynolds(2) considered the sound from a kettle of water as it
was heated to boiling. He concluded that the "harsh hiss" which occurs
at about 10°F below the boiling point comes from vapor bubbles which are
formed at the heated bottom kettle surface and then rise and collapse
suddenly in the colder water above. The hiss represents many bubbles,
each of which gives a sharp click when it collapses. He then presented
further evidence on the source of the hissing noise from pipes at room
temperature by demonstrating that water flowing through a small glass
tube venturi type restriction also produced a hissing. This noise coin-
cided with the appearance at the restriction of a white spot which Rey-
nolds attributed to a fog of air-vapor bubbles formed in the low pressure
region. The hissing he attributed to the collapse of these bubbles in
the higher pressure liquid downstream of the restriction.

In 1895 Sir John Thornycroft and S. W. Barnaby(3), in England,
presented a paper on the screw trials of the new torpedo-boat destroyer,

Daring, in which they postulated that the reason for her poor performance
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was the inefficiency and loss of power caused by the formation of cavi-
ties in the water. R. E. Froude initiated the use of the work "cavita-
tion" to describe this phenomenon. Barnaby(u) discussed the later trials
of the Daring in 1898. By increasing the blade surface area by 45 percent,
the same speed could be obtained as with the original screws, 24 knots,
but with the horsepower reduced from 3700 to 3050, indicating the magnitude
of the effect of cavitation on performance. At the same r.p.m., the
speed was increased to 28.4 knots.

In January, 1894, Sir Charles Parsons(5) formed a syndicate
to test applications of steam turbines to marine propulsion, and the
ship Turbinia was started. 1In a recent review of Parson's work,
L. C. Burrill(6) indicates that even before the Turbinia was built, or
cavitation was recognized, Parsons anticipated that the high speed of the
turbine drive would require several fine pitched screws on a shaft in
order to obtain a sufficient blade area to provide the required thrust.
The initial trials of the Turbinia were unsuccessful in that power con-
sumption was excessive for the low ship speed attained. After consider-
able experimentation with various configurations, Parsons decided on
three separate shafts each with three screws, and driven by three tur-
bines. In conjunction with these experiments, Parsons ran a two inch
diameter model screw in water within a few degrees of boiling, and
photographically observed the formation of cavities behind the leading
edge of the screw near the blade tip. At higher r.p.m., a complete vapor

cavity was formed with almost all the power going into maintaining the
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cavity. Thus, Parsons identified and solved the problem of cavitation
on performance on high speed screws, and developed one of the first model
tunnels for investigating cavitation of marine propellers.

In addition to loss of performance, another phenomenon became
apparent as marine propulsion units became more powerful and operated =t
higher speeds. With propellers, and also with other rotating hydraulic
machinery, the total vapor or cavity volume present for a noticeable loss
in performance may be significant. But even if the performance is not
noticeably affected, bubbles may form on the low pressure side of the
blade and collapse as they move into the higher pressure region on the
blade. The mechanical action of the bubbles collapsing on the blade sur-
face causes pitting of the surface when the blade is on the verge of
cavitation. In a paper presenting the results of a very extensive inves-
tigation into the possible causes of severe cases of propeller damage,

(7)

Sir Charles Parsons and S. S. Cook came to the firm conclusion that
the damage was mechanical in nature and was caused by collapsing cavi-
ties. A. T. Quelch in the discussion of this paper said the large pro-
pellers his company made for the ocean liners Lusitanie and Mauretania
were quickly eroded two or three inches in depth. So rapid was the
destruction that the blades would have had to be replaced two or three
times a season. His conclusion on the damage was also that it was me -
chanical in nature and caused in part by streams of bubbles coming from
cavitation off forward brackets and impinging on the propellers.

From the time of these first investigations on marine cavita-

tion in the early twentieth century, innumerable situations have developed



where cavitation either is an unwanted phenomenon contributing to damage
and loss of performance or is intentionally promoted and beneficial use
made of the phenomenon. Many reviews consider the varied aspects of

cavitation and erosion, vibration, noise etc.(8’9’lo’ll’12)

Only those
aspects of cavitation concerning the behavior of single bubbles will be
considered here. No attempt will be made to theoretically extrapolate
the results to liguid flows having so many bubbles that interaction be-
tween them may perturb the single bubble analysis. Also, large non-
spherical, oscillating, attached cavities will not be considered. These
restrictions will not greatly limit the value of the analysis as applied

to cavitation damage, because the current major hypotheses for the dam-

age involves the behavior of single bubbles.

C. Review of Theoretical Bubble Analyses
(13)

Besant presented one of the earliest theoretical analyses

on the motion of the liquid during the collapse of an empty spherical

(14)

void or bubble. Rayleigh gave a solution for this problem, which
gives the velocity and pressure of the liquid, assuming the liquid is
incompressible, inviscid, and has zero surface tencion. The solution
predicts infinitely high velocities for the liquid at the bubble wall as
the radius of the bubble approaches zero. He also solved the problem
for a bubble containing gas which is isothermally compressed as the bub-
ble collapses and thus the gas arrests the bubble wall motion, and pre-
vents infinitely high velocities. Cook(7) also solved the problem of

spherical collapse, and assumed that the bubble wall struck a rigid con-

centric sphere after collapsing part way, thereby eliminating the
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difficulty of an infinite liquid velocity. At the instant of contact

he introduced liquid compressibility into the problem and calculated the
resulting pressure on the rigid sphere. Lamb(lS) has also presented
Rayleigh's results, and has gone further to obtain the motion of an ex-
panding bubble where there is internal gas at a pressure greater than

(16)

the liquid pressure. In this expanding bubble, Lamb used an adia-
batic gas expansion from an initially high pressure to represent a sub-
marii = explosion.

Beeching(l7) considered a Rayleigh type analysis and included
the effect of surface tension at the bubble wall as well as both adiaba-
tic and isothermal compression of gas within the bubble. His conclusion
on surface tension was that it was negligible unless the pressure differ-
ential between the liquid far from the bubble and the constant assumed
internal pressure were very small.

(18)

Noltingk and Neppiras considered cavitation in an incom-
pressible liguid caused by ultrasonic vibration. In this case they gave
numerical solutions for the Rayleigh type equations with surface tension
for an alternating pressure in the liquid awsy from the bubble which
caused the bubble to oscillate when it contained a compressed gas. For
a given ultrasonic frequency, the initial radius of the bubble will de-
termine whether or not the bubble collapses completely during one cycle
of the imposed pressure field. Or, “or a given initial bubble size, a

bubble resonant frequency can be calculated. If the ultrasonic pressure

frequency is greater than the bubble resonant frequency the bubble will
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oscillate irregularly during collapse and expansion, and if the ultra-
sonic frequency is less than the bubble resonant frequency, the bubble
will collapse completely during one cycle.

Poritsky(l9) presented the first analysis of single bubble
collapse which considered liquid viscosity. As in the Rayleigh analysis
he assumed an incompressible liquid. In the Rayleigh solution, the ve-
locity at the bubble wall for a given value of the ratio of bubble radius
to initial radius can be obtained for any initial bubble size or liquid
pressure from a single solution to the suitably normalized differential
equation. However, the introduction of surface tension and/or viscosity
introduces a scaling effect into the equation through two normalized
parameters containing the surface tension and viscosity. Poritsky, and
also Shu(go) in a note to his paper, found that if the surface tension
is zero there is a limiting value of the viscosity parameter which if
exceeded will prevent the wall velocity from becoming infinite and in-
stead will cause the collapse to slow down; and will make the collapse
time infinite. When the effect of surface tension is included, all
bubbles collapse in a finite time.

A1l the work mentioned here so far has neglected the effects
of heat transfer from condensing vapor or heated, compressed gas inside
the bubble during collapse, and the effects of mass transfer by diffusion
of gas, between bubble and liquid. Such effects are of predominate im-
portance 1In situations of bubble growth or collapse involving heating of
liquids during boiling. They are of importance here also, even though

inertia of the liquid is usually considered the controlling factor, in
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that they limit and determine the minimum bubble radius during collapse
and also the maximum ligquid velocities and pressures. Silver(zl) pre-
sented one of the first analyses which considered the effect of the con-
densation of the wvapor inside a collapsing bubble. He assumed that the
rate of collapse was dependent only on the rate at which the vapor con-
densed on the bubble wall and the rate of removal of the latent heat
from the wall into the cooler liquid, thereby ignoring the liguid iner-
tia effects which governed collapse in the Rayleigh case. His analysis
eliminated the possitility of infinite velocities and pressures, but
left some question as to the validity of the assumptions and of the re-

(8)

sults obtained thercfrom. Eisenberg states that Silver's results can
be teken as a lower limit on the collapse rate of a vapor filled cavity,
and have significance in that regard.

Plesset(gg) has analysed the rate of evaporation or condensa-
tion into a typical bubble collepsing in water, and states that if the
velocity of the wall as it moves inward is appreciably less than the ve-
locity corresponding to the rate of condensation of vapor on the liquid
surface as determined from equilibrium conditions, then the pressure within
the bubble mey be considered constant at the vapor pressure of the water.
In other words as the bubble wall moves inward all the vapor in the volume
displaced condenses on the bubble wall. For water at T2°%F he estimates
that the maximum wall velocity for this condition to hold is ~500 feet
per second, which is considerably below the maximum possible calculated
velocities, but within the range of velocities which can be observed

photographically-before the bubble becomes too small to see. Plesset(23)

later considered the entire <field of bubble dynamics including
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heat transfer effects, gas diffusion and bubble instability in a resume
report. He points out that the probability that a vapor molecule which
strikes a liquid surface will stick to it is only 0.04 for water at 0°C.
Using a modified approach to that sbove he obtains the "charsascteristic
velocity" for either eveporation or condensation at only sbout 26 feet
per second using the above probability of condensation of 0.04. In any
event, it would asppear that the finite condensation rate and therefore
the compression of the vapor can be significant in retarding the collapse
for rapidly collapsing vapor filled bubbles, especially in the later
stages of collapse.

(2k)

Novotny verified that the damage to metal specimens, oscil-
lated by a magneto-striction device in various liquids, was strongly de-
pendent on vapor pressure. Assuming the validity of the usual hypothesis
that cavitation damage is caused by the stresses developed on the speci-
men during bubble collapse, he indicates that the collapse is far less
violent for liquids near their boiling point or for liquids with high
vapor pressures. His conclusion on this point was that a higher vapor
Pressure inside the bubbles prevented the bubble from collapsing so
rapidly, and therefore also prevented sufficiently high liquid pressures
from developing to cause damage to the adjacent solid specimens.

The effects of surface tension on liquid vapor pressure and
bubble surface temperature have not been extensively considered in rela-
tion to bubble collapse. Silver(Zl) took account of the increase of

energy available from the decreasing bubble surface area and considered

this energy in the heat transfer from the vapor to the liquid. As the
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bubble collapses, the energy gvailable, whiczh is released at the surface,
is equivalent to the energy required to form a new liguid surfacze, beyond
that energy necessary to overcome hydrostatiz pressure. Secker; Roellig
and Wilson(25> also conslder this surface zontributicn to total bubble
energy in a review of several authors' work on rnucleation of bubbles.
They point out that most analyses ignore, in the energy balance describ-
ing bubble expansion from assumed micro-bubbles, the energy necessary to

maintain the surface temperature constant during isothermal expansions.

The curvature of the liquid surface forming the bubble wall has also

bubble. Most analyses have assumed that the eguilibrium vapor pressure

within a small bubble was the same as the vapor pressure over a large

plane surface, which is the valiue reported in the saturation pressure~

(26)

temperature tables for liquids. Sir William Thomson'

(27) 8)

Keenan'

and also later

4
2
and Paul\ have shown that the eguilibrium vapor pressure

)]

of & pure substance over a «urved liguid surface such as in a capillary
tube or a bubble is a function of the radius oF ~urvature of the liquid
surface. The vapor pressure inside a bubble of radius »r is given by

(28) (27)

Paul" and by Keenan' as

,/ng i - — _2C
/}?aé FQPT

where p 1s the vapor pressure over the concave surface and Pgat 1s
the saturation vapor pressure for a flat surface at temperature T. The

following table gives some values for the ratio P +/P 1iL vwater at 68,
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r
(inches) Peat
—=
107 1.000043
107" 1.00043
1077 1.0043
1070 1.0k27
1077 1.519
1078 65.5

By comparison, the wavelength of light in the visible spectrum is from
1.58 x 1072 in. to 2,76 x 1077 in., and a spherical drop of liquid water
with redius 10"6 in. contains 2.29 x 106 molecules. A reference bubble
used in the later numerical analysis has an initial redius of 50 mils or
5 x lO_2 in, When the bubble has collapsed to one thousandth its initial
radius, or to 5 x 1072 in., then p/pSat = 1.0008L. Therefore, in the
range of the calculations, the effect is small, but may be appreciable
when considering nucleation phenomena from groups of liguid molecules.
The fact that liquids can support considerable tension, or
the equivalent that they can be superheated above the stable boiling
point without boiling, has received consideration in regard to the nu-
cleation of bubbles. Reynolds(29) described experiments with a column

of mercury in 1877 in which he was able to support a 59 inch column with

atmospheric pressure. He then connected a vacuum pump to remove the
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formation of bubbles from preferred nucleation sites, both in cavitation
end in boiling heat transfer. The main object here in this regard will
be to use the informetion which is availeble on nucleation to predict
the possible gas and/or vapor content of the cavitation bubble and there-
by to more closely calculate the mechanisms involved in the collapse of

the bubble after it is already formed.

D. Statement of Bubble Dynamic Problem

1. General Theoretical Analysis

The theoretical analysis is concerned with the behavior of a
typical cavitation bubble in ligquid. Assume that a perfectly spherical
void exists within a body of liquid, and that it is maintained by some
imeginary thin, hard shell, in a motionless state. At some instant (from
which time is measured from zero) the hard shell instantaneously disap-
pears, and the surrounding liquid, moving under the pressure differentiel
between the liquid and the void, flows inward to fill the void. At all
times the void or collapsing bubble is assumed to maintain its spherical
shape. In real situations, of course, the bubble would have grown from
a small nucleus to its maximum size as the result of lowering the liquid
pressure. Therefore, in comparing the theoretical presentation with the
experimental facts, it is assumed that there is no difference in the
manner of collapse of a bubble which has grown from a small nucleus and
a bubble which was artificially created for analytical convenience, pro-
vided only that the conditions which exist inside the real bubble and in

the surrounding liquid at time zero and during collapse are reproduced




-13-

atmospheric pressure, so that the column of mercury had a tension at the
top of ne:rly two atmospheres without breaking the column. Considerable
care was required in cleaning the glass tube to permit this ~igh tension.
Reynolds noted that even though a liquid.will gupport large tension, it
1s not necessary to provide large stresses to fracture it. Tn the same
manner a piece of cloth may be easily torn from one =dge and yet may
support tension. Fisher(Bo) has calculated the fracture strength of pure
liguids and found that the calculated values are always greater by a very

large amount than the maximum experimental values. The premature fail.re

is associated with impurities in the liquids, where a solid material in

2

the liquid can act as a site for nucleation. Harvey‘)l) has also shown

that gas in crevices in solids acts as nucleation zitzs in liquids, and

i1s the cause of fracture strengths lower than theoretically predicted.
Nucleation of bubbles also occurs from microbubbles of gas which

és or into solution.

fude
£
7]

n sol:

e

may be driven under pressure into cracks

(
z1vi{32)

n

has discussed the voids formed in the water moderator-coolant

e
£

by nucleation of bubbles in the Spert IIi nuclear reactor transient tests

as reason for the reactivity decrease observed. The sites for nucleation
could have been either gas in the pores of the Fucl plates which did not
fill with water when the fuel was immersed ir the water, or microbubbles
from radiolytic gas produced, or gas dissolved in the water, which then
migrated to the fuel surface and adhered by surface tension, The increase

in fuel temperature caused these bubbles to expand and displace moderator,

leading to a shutdown mechanism. Many other authors also consider the
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in the theoretical analysis. The desired information is the variation

of the bubble radius as a function of time and ths velocity of the bub-
ble wall as the bubble collapses. Also desired is the velocity and
Pressure distribution in the liquid adjacent to the bubble at any instant
of time during the collapse as a function of distance away from the bub-
ble wall and into the liquid. The manner in which these quantities

change as the physical parameters change will be investigated.

2. Liqguid Conditions

Assume an infinitely large body of static 1liquid with a small,
perfectly spherical void within it. The condition of infinite size is
required to eliminate the influence that solid or frec surfaces can have
on the motion of the collapsing bubble, and is a common assumption in
many bubble collapse analyses.

(33)

Birkhoff and Zarantonello considered an oscillating bubble
near a rigid surface and showed that the effect of the surface is to
cause the bubble to migrate towards the solid boundary. Most of the mi-
gration takes pliace when the radius is small. Herring<3h) considered
the motion of widerwater explosion bubbles and also verified the influ-
ence of a nearly rigid surface.

In regard to cavitation damage, several authors consider the
collapse of bubbles which are attached to a solid surface and appear
initially as hemispherical bubbles. iza 35) considered the collapse of
a hemispherical bubble, where there is only radial velocity. He took

account of the viscosity of the liquid by assuming a parabolic velocity

distribution along a perpendicular to the surface, s0 that the circle
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of bubble contact on the solid was fixed at its original size. Therefore
the bubble collepsed with the top of the hemisphere approaching the sur-
face; and the bubble assuming a disc like shape. Naude and Ellis(36’57)
showed photographs of bubbles collapsing on solid surfaces, and also
concluded that the collapse was not of a spherical hemisphere. They
found, as in Oza's analysis, that the hemisphere collapsed to a disc-like
shape and then the center of the bubble disc was penetrated by a liquid
jet which then struck the solid surface. A theoretical analysis for in-
compressible liquid, with no viscosity effect like Oza had used, indica-
ted that with irrotational flow, a perturbation of the surface could
cause the type of collapse which was photographed. The solid was a
photoelastic material, so the stress in the solid when the jet struck

the surface could be observed. They concluded that cavitation damage

was due to the action of this jet of liquid. Kornfeld and Suxarov(58)
had previously also come to & similar conclusion regarding cavitation
damage.

Recently, Shutler and Mesler(59) performed experiments with
spark generated bubbles adjacent to solid surfaces and came to the op-
posite conclusion - namely, that it was not the liquid jet which ca:sed
the observed damage on their solid specimens. They observed small dents
from bubbles at their minimum volame and believed that the damage was
surely caused by a pressure pulse from a collapsing cavity at its minimum

volume. They further observed that a second solid boundary perpendicular

to the first caused the bubbles to collepse asymmetrically. Therefore,

e,
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there is still some question as to whether cavitation damage is caused
by attached hemispherical cavities, or by more distant completely spher-
ical bubbles, or by both.

The magnitude of the effect of the adjacent boundary on the
bubble collapse is somewhat uncertain, and the proximity of the venturi
wall to the experimentally observed bubbles in the present investigation
may affect them. It will be assumed for purposes of analysis that the
bubble considered is separated and independent from the venturi wall.

The theoretical analysis will be compared with experimental
photographic results of bubbles in g cavitating venturi, where the liquid
environment of the bubble is far from static. There is slip in the ven-
turi between the liquid and the bubble, with the bubble traveling at a
greater axial speed than the liquid in the constant cross section throat
of the venturi. In low velocity, gas-liquid tests, Smissaert(ho) cor-
relates slip ratio, (ratio of gas velocity to liquid velocity) with
surface tension and dynamic viscosity of several different liquids as
well as velocity, temperature, and pressure, Vogrin(ul) also observed
slip ratios on the order of 10 or more in two-component flow in a con-
verging-diverging nozzle. Many other investigations also exist in the
literature regarding the effects of slip in various specialized cases
and these are merely cited as typical. One effect of the slip on the
collapse of the bubble may be through its effect on the circulation of
the bubble contents and the more rapid removal of heat from the liquid
in the vicinity of the bubble wall. Lamb(ug) gives estimates of the

velocities of gas or vapor inside, and of the liquid outside, a constant
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diameter bubble in a known force field, such as a bubble rising in a
liquid in a gravity field. The effect of slip will not be explicitly
applied here to the theoretical analysis.

It will be assumed in the analysis, that there is no gravi-
tational or other body forces acting on the liquid in which the bubble
is collapsing. Especially in liquid metals, there may be electric ahd/
or magnetic field effects. Elliott(45) considers a magnetohydrodynamic
cycle for nuclear-electric power conversion in which electric force
fields are of importance. An interesting effect of the opposite type,
namely the influence of cavitation bubbles on a magnetic field, was

(u)

reported by Clark In working with the undesired cavitation in
cryogenic liquid systems for rocket propulsion, it was found that when
cavitation occurred, a magnetic field is generated in the region. This
magnetic field is detected with appropriate sensing coils and used as
an indication of cavitation inception. The author also described ap-
paratus used for detecting a magnetic field which was generated where
helium gas bubbles in liquid oxygen or water collapse on a surface. He
indicated a possible mechanism whereby the magnetic field generated by
collapsing bubbles and the subsequent eddy currents contributed to ca-
vitation damage. No attempt has been made here to consider either the
effect of an external electro-magnetic field on cavitation bubbles or
to measure the field generated by collapsing bubbles if indeed such a
field exists.

Gravitational effects may also be appropriately ignored in

the venturi where the cavitation bubbles are small and other pressure
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and velocity effects are predominate on the bubble behavior. However,
in applications such as boiling heat transfer, the -~ -ancy of +he bub-
i3 on & hot surface may significantly affect thzir behavior.

In their investigation on the collapse of vapor-gas bubbles

(45)

in 1liquid near the boiling point, Florschuetz and Chac' eliminated the
effect of graviiy by letting their entirs experimental apparatus fall
freely as a bubble was injected and collapse«d in a tank of liquid. How-
ever, vwhen the pressure rise in their =xperimental equipment was greater
than about 30 cm Hg, they observed unstable collaps:. In a typical man-
ner, a jet of liguid appeared to pass down thrcugh the bubble, strike the

{34,46)

bottom surface and cause shattering. Underwater exp. dsions are
also strongly affected by bouyancy because of the greater hubble size
and therefore greater pressure differential from top to bottom, and be-
cause of the longer time of collapse and therefore greater time for

{
bouyancy effect to be felt. Gongwer® discusses high speed photographs

oS

of a four foot diamster underwater bubble formed by an explosive specially
selected to produce a minimum of permanent gas upon detonaticn. Through-
out most of the collapse of the bubble there appzar porcupine-like streaks
extending radially from the surfacs, sttributed to debris on the surface,
The fact that these streaks are straight radial lines indicated a veri-
fication of the assumption of perfectly radial flow surrounding the
bubble. Since the bubble ¥:s in a relatively shallow pool of water,
however, the final collapse of the bubble ghowed a rapid upward motion

of the bubble center. In the extreme instances of large gas-filled bub-

bles in water, the initially spherical shape Gistorts into a torus-shaped
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void. Walters and Davidson(h7> describe experiments on gas bubbles
rising in static water where the bubble assumes a mushroom shape and
then breaks into a small spherical-cap bubble with a large toroid below.

Some consideration of the probable conditions in the experi-
mental venturi used here indicated similar effects. A liquid particle
leaving the experimental venturi throat would suddenly start slowing
down in the diffuser if uniform single phase flow existed, and the ve-
locity depended only on flow area. The maximum deceleration experilenced
by a liquid particle under such ideal conditions would occur at the

throat exit. The liquid velocity V(Z) at a distance Z inches down-

stream of the throat exit for a 1/4" throat opening is given by

Viz) = v; /4
1/4 T (2 {TO.Y\ 30)2

The liquid acceleration is then

dZ V: (2tan 3°)

d_ fnd o 3
dz dt /5[ g+ (2400 3°)2 |

_L:
dt?

At a typical throat velocity, Vp = Th.6 ft/sec, the acceleration et

the throat exit would be

dzz—z.79x./o4£j:_ _-867. 9%
dté Sec?
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where the negative sign indicates the acceler tion is directed upstream.
However, as indicated later, the velocity is probably not uniform across
the flow in the diffuser when cavitation is present;, so the calculated
negative acceleration does not occur at the throat exit. A jet of li-
quid leaves the throat and slows down abruptly at a location downstream
of the throat exit;, so the deceleration is probably still very large.
Near the termination of the -~avitatlon and within a very short distance
the static liquid pressure (as shown later) surrounding a bubble moving
with liq.id velocity rises sharply. The time rate of change of pressure
can be 10,000 lbf/inz/sec. The very steep pressure gradient on even a
small bubble may cause asymmetric collapss, which was observed here as

a flattening of the bubble in the direction of flow. Plesset<22) has
reported the spherical growth and collapse of bubbles from cavitation in
the varying pressure field over an ogive in a water tunnel, based on

(57)

pictures by Knapp and Hollander. A more complete descript on of the
venturi bubbles observed here will be given later, but the assumption
of spherical symmetry for single bubbles even in a large pressure gra-

dient is assumed for the present analysis t0 meke the mathematics at

all tractable.

5. DBoundary Conditions in Liquid

The usual assumption, in bubble dynamics analyses, is that
the pressure very far from the bubble is specified and is spherically
symmetrical about the bubble. The narrow venturi throat which may be

only a few times as large as the bubble diameter, and the changing
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pressure gradients transverse to as well as along the direction of flow,
may cause asymetries in the liquid pressure around the bubble. During
the final portion of the bubble collapse, however, theory indicates that
collapse occurs so rapidly that pressure changes more than a few original
bubble diameters away will not affect the collapse. Therefore, local
pressure fluctuations near the bubble will be assumed negligible for the
present in the theoretical presentation.

Pressure veariations in the axial direction as & bubble moves
through the venturi can be measured. Wall taps placed at various posi-
tions along the direction of flow are used to obtain the pressure vari-
ation around the bubble, end this variation will be assumed to change
symmetrically about the bubble, as if the bubble were in a static liquid
where the liquid pressure had the same time variation as would be felt
by a point which moves along the venturi with the seme axial velocity
as the bubble. Photographs of bubbles give the bubble axial position
and therefore venturi pressure, as a function of both time and bubble
radius. This pressure variation can then be used in calculations of

bubble behevior as the boundary condition for the pressure at infinity.

4, Boundary Conditions Inside the Bubbl

It will be assumed that whatever the conditions of pressure,
temperature, or gas and vapor concentrations which exist inside the
bubble, they are uniform throughout the bubble with no radial varia-

(48)

tions. Trilling investigated the collapse and rebound of a gas

bubble, and concluded that the pressure variation at the bubble wall,
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when the shock waves in the gas as the bubble collepsed were included,
was virtually the same as if the gas were compressed uniformly and
isentropically. Therefore, it will be assumed that internal radial pres-
sure variations will not significantly affect the collapse behavior.

(49)

Hickling considers the temperature rise of various gases

inside bubbles during a non-adisbatic collapse as a means of explaining
the observed variations in intensity of the visible radiation from ul-

trasonically formed cavitation bubbles in liquid with several different
dissolved gases. This phenomenon of sonoluminescence has been observed
by many persons and in many different liguids.* Chambersiso) reported

varying intensities of luminescence from 1% pure liguids and from some

solutions for vibratory cavitation at 8900 cyczles per second. He indi-
cated the light intensity was proportional to the product of viscosity

and dipole moment and inversely proportional to liguid temperature.

(51)

Jarman, in a discussion of the many and varied proposed mechanisms

for sonoluminescence, conzluded, in a modification of his previously

52)

that it might possibly ari
23

14/]

reported results, ¢ from microshocks with-

R

“he collapsing cavities. Jarman and Taylor™ give one cf the few

published reports of {very faint) sonoluminescence in a flowing system;
. . . . . - (hk9) )

namely tap water in a cavitating venturi. Hickling® concluded in

his analysis that the light was from gas within the bubble which became

incandescent when compressed very rapidly, due in most cases; to the

*It was observed here using glycerin, mixed with a few drops of water,
oscillated by an ultrasonic horn at 20KC and &bout 2 mil amplitude. A
faint bluish light was clearly visible to the naked eye in a darkened
room. However, no light could be seen in a dark room from tap water
cavitating in a venturi with throat velocities up to 200 ft/secn
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presence of various impurities. The variation in intensity with dis-
solved gas was caused by different thermal conductivities of the gases,
and therefore different amounts of heat transferred from the gas to the
bubble wall ard dissipated in the liquid, thereby varying the maximum
temperature of the gas near the bubble wall. Therefore, the radial var-
iation in temperature within a gas bubble can be significant, and as
Hickling shows, the smaller the initial bubble size the more pronounced
is the thermal conduction effect on radial temperature variations.

In the venturi used here, the gas within the bubble presumably
comes from the initiasl gas present in whatever nucleus initiated the
growth, and also perhaps to & slight extent from gas diffusion from the
liquid into the bubble during bubble growth. Treaste(sh) calculated
the length of time for bubble growth using several theoretical models in
an attempt to predict the time delay for the appearance of cavitation in
a water tunnel after the pressure is lowered to the point where it is
known that cavitation will eventually occur. He used two previously
published analyses. The first model assumed a large relative velocity
between bubble and liquid, thereby contributing to air diffusion and
subsequent bubble growth. The second assumed bubble growth by diffusion
from a static liquid, neglecting the velocity transport. The first pre-
dicted bubble growth times which were several orders of magnitude less
than his observed cavitation delay times, thereby indicating a possibly
significant effect on the growth or collapse of bubbles as a function

of the slip ratio between the bubble and liquid. The growth times
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reported for the first ¢ :alysis, including v=locity transport, however
wers more nearly comparable to the growth times observed here for single
bubbles growing in the venturi.

The effects of gas diffusion before and during bubble collapse
will be considered in greater detail later, when a specific procedure is
developed t0 be used in a numerical sanalysis 10 represent the pressure
variation inside the bubble during collapse. Throughout this analysis,
as stated above, the physical properties of the bubble contents will be
assumed wniform at any instant of time, but may vary with time. As the
bubble becomes very small, the question of whether or not the continuum
approach is valid becomes important, especially for the gas or vapor
o s {49) . ‘ o 4
irside the bubble. Hickling states that he considered that even
though the mean free path of gas molecules may be comparable to the bub-
©le dimension, there are s0 many gas mo.ei:le collisions tTr:* the con-
tinuum approach is still valid. It is sufficient for the present, to
stats that the initial conditions inside the bubble may be estimated
from the venturi conditions and the pressure variation inside the bubble
can te specified as a function of bubble radius, and perhaps also bubble
wall velocity. The analysis will hence assume that such a function is

available, and can be varied to suit the conditions.



II. HYDRODYNAMIC EQUATIONS

A, Preliminary Introduction

The general equations of hydrodynamics have been discussed by
many authors, with application to the problem of a collapsing or expand-
ing spherical void in liquid.

The method of presentation, the assumptions made for the appro-
priate physical application, and the means of mathematical approximation
or solution, when possible, have varied considerably. It will be desir-
able here, to present some of the more conventionel analyses in detail
in order to better interpret the numericel and experimentel results which
follow,

While some of the detail might be thought to be more appropriate
in & purely methematical summary as an appendix, its inclusion here per-
mits a convenient and hopefully beneficial means of bringing out important
differences among & few of the many other bubble dynamics analyses, and
of indicating any particular value of the present analysis by comparison,

The imcompressible liquid analysis will be presented first,
followed by the compressible analysis, and then both will be followed,

in Chapter III, by the numerical solutions obtained here,

B, Ecuations of Flow and the Rayleigh Soluticn

The continuity equation for e compressible fluid can be written

%_i + (’du‘vV =0 (1)

26 -
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where: p = fluid density, V= velocity vector, t = time and where:

N D .
;D_S = ii + orad € «V/
5L ‘

(55)

is the total derivative, or the variation in density at a point mov-

ing with the fluid. For an incompressible fluid, the density is con-

stant, so at any instant of time, Equation (1) gives

div K7. =0
(2)

Equation (2), when expressed in a spherical coordinate system(56) and

assuming spherically symmetric flow, is

dU . — 2y (3)

where u = radial particle velocity

r radius

Since Equation (3) is valid for any instant of time there is only one
independent variable r , and since the fiow is spherically symmetric
there is only one dependent variable wu so that (3) is an ordinary
differential equation which is simply sclved by separation of variables.
Using the boundary conditions of velocity uw =U and of radius r = R
at the bubble wall, the solutiocn to Equation (3) is, as also given by

Rayleigh,

2 3
U = EZT U (1)
r

o

The general Navier-Stokes equation of motion for viscous, com-

pbressible fluid flow in the absence of external body forces is
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DVe ol grad P + al V2V + 1 arad(divV)]
D P 5 /é!— 3 J A\ /j (5)
where ©p = pressure
KL = shear viscosity

For an inviscid fluid, the last term is zero, and for spherically

symmetric inviscid flow Equation (5) becomes(56)

5u+u_5_(£___

|
3 ) TT® (©)

ST

Equation (4) is substituted into Equation (6) to eliminate the partial
derivative in time, giving an equation with r as the only independent
variable, After separation of variables the equation is integrated using
the boundary conditions that

Lim ‘]:)(.r) = b

-0 foo
and u =0 as r approaches infinity, and using the fact that

U = dR/dt . The result is essentially a solution in Lagrangian coordinates,
where the motion of a particle of liquid is followed, namely a particle

on the bubble wall. The bubble wall radius as a function of time is thus

ey z ' (7)
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where P(t) = liquid pressure at bubble wall  or
P(t) = pressure within bubble also, if surface tension and visco-
sity are zero
p,(t) = liquid pressure far from bubble

Therefore, the pressure at infinity, pm(t) ; and the pressure within
the bubble po(t) (which is equal to the liquid pressure P(t) at the
wall, here) may vary in time in Equation (7).

Rayleigh(lu)

Presented a sclution to this equation for a vari-
able internal gas pressure in the bubble, assuming Royle's law held
during collapse, Lamb(lé) considered an equivalent expression for an
expanding bubble, where he assumed an adiabatic gas expansion and found
an analytic solution for the particular case of 7 = 4/3 5 where the
bubble pressure varied as (RO/R)37 . Noltingk and Néppiras(IB) consid-
ered the case of a gas filled bubble in an osciliating pressure field,

p (t) , and used numerical methods to obtain & solution of Equation (7).

If then the pressure differential, (pw(t) -p (t)) , is a known func-

o]
tion of time, sometimes the analytic solution is possible, and if it is
constant; the analytic solution is definitely possible,
Equation (7) may be written
4,8 o 4 \_'D/Q‘y\pa
_4_3‘? L = — 2\ e (R SN EEE (8)
o

\

2R

Qo
7Uk:

Therefore, the condition of incompressibility or constant density
expressed by Eguation (4), which may be interpreted as a condition

imposing an instantaneous propagation of any pressure disturbance
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throughout the liquid, has permitted the transformation of the partial
differential equation of motion, Equation (6), into an ordinary, first
order differential equation, Equation (8). It will be shown later that
the choice of similar assumptions regarding the propagation of pressure
or sound waves and also the propagation of other mathematical quantities
determines the degree of accuracy of analytic solutions which are fre-
quently used in handling the partial differential equation of motion.

Tt should be noted that the Equation (8) is a non-linear equation., Its
solution was obtained by Rayleigh without actually using the equation by
considering the physical problem and directly equating the available
energy of the pressure differential to the kinetic energy of motion.

LaMb,<l6)

in a formal, purely mathematical procedure, obtained the solu-
tion to this simple case for a constant pressure differential by using

an integrating factor as follows. Equation (8) is equivalent to

JOWRY) = — 2(Bolr,)- B (R, B4R )

e}
\

which, upon integrating between U =0 at R = R, and any velocity

U at R , becomes

U = 2 (Ra(R)-BRI) (R _ )
3 P R

and is ldentical to Rayleigh's result for the bubble wall velocity as a

(10)

function of the bubble radius, with a constant pressure differential,

(PolRo) = Do(By)).
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Using the following normalization, where primed guantities

shall henceforth denote dimensionless quantities,

U= _U )-Jc=;t_ffm<%~_fa1@ S R:= R
\/(Eo(Ro)'B(Ro» R \
P

Equation (10) becomes

12 /

U =2t _ j)
\.\ R'3 (11)

/

Gojro

Expressing R’ in terms of t° 5, using dR’/dt’ = U® , Equation (11)

gives
/
R i
¢ [ i3 \”/2 -
t- [ ,;(_&___.E_g dR o
'3
VAN
/
A solution to Equation (12) for complete collapse tc R' = 0 was

given by Rayleigh as the time for total collapse of a bubble in an
incompressible liquid, collapsing under a constant pressure differ-

ential,

L= 0.91468 (13)

For intermediate values of R: , @ numerical solution in tabular form
\
was presented by Knapp and Hollandera(57/ It should be noted that the

particular form of Equations (11) and (12) permits a single solution
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of the normalized equations to give all possible information. There are
no physical scaling factors involved. Equation (11) says that regardless
of the initial bubble sizes they will have the same real velocity when
they have collapsed to the same fraction of their original size, provided
only that the ratio of pressure differential to liquid density is the
same. However, the actual real time elapsed will be greater for larger
bubbles. Scaling factors will appear, however, when other physical

parameters such as surface tension and viscosity are considered.

C. TIncompressible Liquid with Surface Tension and Viscosity

The inclusion of surface tension in the analysis changes
the liquid pressure at the bubble wall so that it is no longer equal

to the internal pressure. These pressures are related by

P(R) = BE(R) - _ZRQ__ (1)

where o = surface tension. Then Equation (8) for wall velocity becomes

2R UL | 3R U= _ 2(B(R-B(RVR _ 4R (15)
dR e ¢

After integrating in the same manner as before, the velocity is, for

constant (p,(Ry) - pO(RO)).

=a \R"‘ ARG o
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In normalized form Equation (16) becomes

"’—"““’!"” “"‘l (17)

where

Ro(By(R.) - B(R.))

In comparing Equation (17) with Equation (11), it is seen that the
solution for velocity is now dependent upon a parameter ¢’ , in the
equation, so that for each value of the parameter there is a solution.
The effect of surface tension on velocity is, as shown by Equation (17),
that for a given radius R' the velocity is larger, and that the
influence of surface tension is stronger as the radius gets smaller.

A second physical parameter which has a scaling effect on
the motion of a collapsing bubble is the liquid viscosity. The in-
clusion of viscosity in the incompressible case has no effect on the
solution of the continuity Equation (4). Further, as shown by
Pbritsky,(lg) the equation of motion, Equation (5), for an incompressi-
ble irrotational flow as in a spherical collapse, is the same whether
or not viscous effects are included., The effect of viscosity appears
only in the boundary conditions at the bubble wall. Its influence
causes the three principal stresses at any point in the liquid to be
different, and this difference is taken into account at the liquid
boundary. Instead of equating the pressures in the ligquid and in the

gas at the bubble wall, it is then necessary to equate only the




-3h-

principal radial stresses. However, since the viscosity of the gas
and/or vapor within the bubble is small in comparison to the liquid
viscosity, it is assumed that the radial stress in the gas is the
same as the gas pressure., Equation (14), when viscosity is included,
is then

P(r) = B(R)- %’4" ¥ é/o(g_u_ (18)
-

where u = liquid shear viscosity.
The partial derivative is obtained from Equation (3), at the bubble

wall, and Equation (18) is then

R R

Equation (19) is substituted into Equation (8), where po(R) is re-

pRY=F(R)-20 - sm (19)

placed by P(R) , and the result equivalent to Equation (15) which

contained only surface tension, is'*

ny
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From Equation (19) or (20), it is seen that the viscosity effect during
collapse when U is negative is such that the pressure at the bubble
wall is increased, reducing the pressure differential causing collapse

and therefore presumably reducing the wall velocity.

*¥If gas viscosity is also included, the last term becomes
h(uliq + Hgag)U

oR
missible to neglect the effects of gas viscosity.

. Hence if, as is usual, pliq_>> “gas , it is per-
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For a variable pressure differential, p,(R) - p (R) ,

Equation (20) is normalized by using the initial value of the pressure

differential, p _(R,) - pO(RO) . If the normalized viscosity para-

meter is defined as

- Y
72 ., i 2 12 i .f» [ u}‘f"““ . . "; ,i
2R udl _ __ 2F 5,3«11. RRY HEN Y LA (21)
Qo == e P s gt
dR t2 ooy, pre\t R R"
L LiahSer ™ ILER, ;‘1

where all other appropriate terms are also normalized using the
initial pressure differential. If the internal and external pressures
were constant during collapse, the pressure term in Equation (21)

would be unity, and the remaining terms the same as shown. Eguation
(20) differs from the previous Rayleigh Equation (8), or Equation (15)
in that it contains two additional parameters, When both the viscosity
and surface tension are included, the additional term containing vis- -
cosity has the velocity in it in such a way as to prevent a simple
integration as performed on Equation (15). An attempt to integrate

Equation (21) yields, for constant pw(R’) - po(R¥) ,

R
i2 :’ [ i 12 i
N ] - s Ay PR— f . \Y
Y/ C AL H L R4R 21 oy 2T T i (22)
- 4— -—7».‘.: I.’ o= No ﬁ :73 P “; e x;: I i e j i:
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Poritsky(l9) and Shu(QO) show that there is a limiting value
of the normalized viscosity parameter which determines the bubble
behavior., They reduce Equation (21) by substituting a new independ-~

ent variable & = R'/p' and, assuming (p, - p.) is constant, obtain

(e}

i .‘2 ‘ PN
y L'
R FLER R
dd ud L d/" o
When o' =0, Poritsky(l9) shows a series of curves of U' vs &

obtained numerically, for several values of p° . While the viscosity
no longer appears in Equation (23) if the surface tension is neglected,
it still affects the solution because it determines the initial boun-
dary condition at U =0 and R =1 or & = l/u’ . He concluded
that if u' > 0.46 the bubble will require an infinite time to com-

pletely collapse. Shu(go)

arrives at a similar result that the time
is infinite if ' >p! where u! < V6 , (V6 = 2.449) and finite
otherwise., If surface tension is included, both analyses show the
collapse time is finite,

The viscosity need not be large for the normalized viscosity
parameter to have its limiting value, in view of the definition of
u' . A very small initial bubble radius and/or a small pressure differ-
ential have the same effect of increasing up’ .

For a variable pressure differential, pw(R) - po(R) Ecua-
tion (21) is valid, and is solved numerically here. This simple in-

clusion of a variable pressure either at infinity or within the bubble

i1s possible because the liquid is incompressible, and any change in
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these pressures is felt immediately throughout the liquid. It is noted
that only the difference in pressure is important, so that a rise in
internal bubble pressure has exactly the same dynamic effect on the
collapse as a fall in the pressure at infinity. Of course in a real
liquid and pressure rise within the bubble can be very much larger than
the environmental liguid static pressure so the comparable effect of such
a rise can be obtained only by lowering the pressure at infinity well
below zero, thereby putting the liquid in tension. Real liquids are of
course limited in this respect.

The effect of viscosity is to change the available collapse
pressure differential by increasing the liquid pressure at the bubble
wall. The pressure distribution in the liquid away from the bubble, for
an incompressible liquid at any instant of time, is dependent only upon
the instantaneous value of the bubble wall velocity and acceleration,
and therefore only indirectly dependent upon the viscosity through the
viscosity affect on these two variables. Equation (4) is substituted into
Equation (6), the result is integrated between p(r) at r and p_ at r=o,

and using dU/dt = UAU/AR, Equation (20) is substituted for dU/AR, giving

Pe)-B)_ UR_UR . RIBR-ER . 26, U
P — = F ST "l. ? +€R+%R— (24)

This is identical to Rayleigh's result if the last two terms are
omitted and if his analytic solution for U is substituted. If the

variables are normalized using the initial pressure differential as

before, Equation (24) becomes
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i ! 12 ‘ ‘ »] !
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where

-Pl(r') = Fer) 'r“:
(R -F(R)

X
K

Solutions for Equation (25) are given later for various pressure differ-
entials and parameter values after the velocity is determined numerically

from Equation (21).

D, Compressible, Viscous Liquid

The Navier-Stokes eguation of moticn, Equation (5), is used
for the compressible case, and the solution presented here for a col-
lapsing bubble follows that of Gilmore.(58’59) For spherically symmetric

flow,

P ¢
Fyve N
euUYi v =0

Using the vector identity(55)

b

2= IV ' 1T\
s . ,
VoV o= grad (d*\./ \/> — Qurl LiiriN

—

to eliminate the first term in the bracket in Equation (5),

.D.Y—- ‘i P,y | grad -;',.(7}1
yiaiuls 3r‘ad , +.5/?%.57rac (4 / §
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The continuity Equation (1) is then substituted into this equation,
giving

Dy.

o ._%’- grad ‘P_;_B‘Lﬁ[grad(__# ,g_g_} (26)

e
At this point, several assumptions have been made by Gilmore and by
others who have used the same procedure. First, the viscous effect is
assumed to be small, and second, the compressible effect is also assumed
small so that the product of the two in the last term in Equation (26)
can be neglected. Gilmore(58) points out that the change in viscosity
with pressure in liquids is greater than the change in density with
pressure so the neglected term can be shown tc be smaller than those
variable viscosity effects usually neglected in the Navier-Stokes
equation. However, the effect of compressibility is still partially
included through the continuity equation, and there is no mathematical
inconsistency in this procedure since the compressibility term would
have been dropped if the viscosity were simply assumed to be zero,
Therefore, in spherical coordinates, the compressible egquation of motion,
Equation (26), becomes the same as Equation (6).

Another assumption is now made concerning the liquid: namely
that it is barotropic, i.e., the density is a functioen only cf pressure,

so that

Je._ 3rad? = 3ro~.d%
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Define a new quantity, which for now may be thought of as simply a new

variable called enthalpy, and defined by

P
h(P) = | dP
e

A

Then, from the preceding equation

F

| r
9rad P = 9ra.d/ dF = 3r~ad h(P)
3 J% P

Equation (26), in spherical coordinates is then

Introduce now another new variable which is recognized as the sonic

(27)

velocity, o,

From the definition of h ,

dh . L
d? ¢

so that

pe_ 4P _ Dh(dPVd4P\_ Dh @
Dt"d“‘&h‘ﬁ?@?ﬁ)'%{cz

dh Dt (30)

and the continuity Equation (1) becomes

¢? Dt
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There are now two partial differential equations, (28) and (31), in
which there are three dependent variables, V , h , ¢ , and two inde-
pendent variables r and t . An appropriate equation of state for
the liquid, giving pressure as a function of the density, is given later,
so essentially ¢ and h can be reduced to one variable, leaving two
equations, with two dependent and two independent variables, which must
be solved simultaneously.

There are various solutions to these equations in the litera-
ture and a discussion of some of the more important methods seems in

crder here, Flynn(6o)

presented an approximate analytic solution wherein
he used a table of values of pressure and density instead of an explicit
equation of state for the liquid. His sclution was in terms of either
the exponential integral or the confluent hypergeometric function,

values of which he calculated and presented as curves. Mellen(él)

com-
puted the bubble wall velocity using Gilmore's method, and used this to
get the pressure in the liquid at a fixed distance far from the point
of collapse, He computed the propagaticn of the shock resulting from
complete collapse of the empty bubble to zerc radius. A later work(62)
included the shock pressure as a functicn of distance, both with some
experimental verification from spark induced cavitation bubbles of about
one or two cm initial radius, Schneider(63) obtained a graphical solu-
tion to the compressible flow equations using the method of character-
istics in a hand calculation. The bubble collapsed onto an imaginary
rigid sphere, and the compressibility effect caused the bubble to re-

Brand(6u’65)

bound away from the sphere after collapse. presented




similar calculations to those of Schneider, but by finite difference e
computation of the characteristics on a computer rather than graphi-
cally. He also found the shock wave resulting after collapse onto a
rigid sphere, Hickling and Plesset(66) present one of the most thor-
ough solutions to the compressible equations, for bubbles collapsing
and then rebounding from gas contained within, which was compressed
adiabatically. The machine solution was taken up to the point where a
shock wave formed on the rebound pressure wave, It is important to
note that all the above authors considered compressible effects, but
none considered the possible viscous effects. The present solution
will include both.
The above Equations (28) and (31) must be solved simultane-
ously, or a method must be obtained to eliminate one of the independent
variables. There are various other acoustic and quasi-acoustic appro::-
imations to account for a finite instead of infinite velocity of pro- .
pagation of waves. The Kirkwood—Bethe(67’68) assumption is based on
experiments with underwater explosions, and is the one used here and by
Gilmore. It is assumed that the quantity or characteristic r(h + u2/2)
is propagated outward in the liquid with characteristic velocity (c + u)
where c¢ is the local sonic velocity. Therefore, the relation between

r and t can be expressed by

gi.{?“/!ﬁ-#j&i
Jti \ 2 .
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and one of these variables may be eliminated.
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Since the convective derivative in spherical coordinates is

D =29 ,ud. (33)

Dt 3t r

Q
[
Q.-

Equation (32) becomes

,.\'! A . 2
D r(h+i;§:_ci[rih+ﬁfi (34)
Dt 2/} I
which, when expanded, yields
Ch D PR G ¢ ot Y.
r ‘gerLii$kﬁ+qwd+zﬂu.rk$;.+Vfi£f-:10 (35)
Dt Dt 4 el ar

Equation (35) is then merely the Kirkwood-Bethe assumption in appro-
priate form in spherical coordinates, The two partial differential Equa-
tions (28) and (31) are substi‘uted into Fquation (35) and the deriva-
tives with respect to r are eliminated. Since D/Dt is the deriva-
tive at a particular particle of liquid, and since a point on the bubble
wall is such a particle, the resulting equation will immediately describe
the motion of the particles on the bubble wall., Letting capital letters
represent the variables at the wall, and using the relation U = dR/dt ,

Equation (35) becomes

(WY 3y g 3 WA v \“‘;; > NN A
RUUS Ul 3UH W H, LW RU 487w (36)

fQ!i ~rit s L ATt A - ) ~
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So far in Gilmore's method, an equation of state for the liquid

has been assumed but has not been explicitly stated. It will be assumed
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that viscous dissipation which occurs in the liquid at the bubble wall,
as was also the case for the incompressible analysis by Poritsky, does
not affect the liquid properties such as temperature or density. Any
heat generated by viscous effects will be assumed to be lost from the
system, so no heat conduction effects need be considered in the liquid.
The equation of state assumed for approximately isentropic compression

(58)

in many liquids is

[P+B\ _ (E

\F+8) &

where Py and p, are any reference pressure and density.

M
(37)

e

B = 3000 atm."k

7 J

Using (37), the sonic velocity is calculated from Equation (29)

are constants for water.

e

n

iy
=dP = n M>+B)(j‘_t5_> M pn(P+B) (38)
F)

df fr \R+E

and the enthalpy h from Equation (27)

ZZ:E
h=n(E.t+8) i( P+b J (39)
(n-1) €, ALY l

Therefore, Equation (36) can be formally expressed in terms of the
dependent variable U , the independent variable R , and the boundary
condition for the pressure, P(R) , at the bubble wall,

The boundary condition for pressure far from the bubble,

P, is assumed constant during collapse since the Kirkwood-Bethe




-L5-

assumption, Equation (32), provides for only outward moving character-
istics and a varying P, Wwould cause inward moving waves in the physical
situation. However, comparison of the compressible and incompressible
solutions shows little difference between the two during the early por-
tions of collapse which consumes most of the total collapse time. The
reason is that since < >> u throughout the liquid for this period, a
finite propagation velocity is still relatively so large that the ligquid
behaves approximately as an incompressible liquid. Therefore, in spite
of the solution by means of the Kirkwood-Bethe assumption, a variable
Pressure at infinity may be imposed for about the initial three-fourths
of the change in radius without any numerical isconsistency,

The boundary condition at the bubble wall is introduced now
and this introduces the viscosity, surface tension, and the pressure
within the bubble. Equation (18) for the incompressible case, becomes

as follows for a compressible liquid:

= ‘-

. 5\ 2PN . ? s ~
PR} = R{R) - 20 - 4pn il - e/ (40)

According to Gilmore, the last term is of the same order of significance

as the term for the product of the viscosity and compressibility which

was dropped from the Navier-Stokes equation and is therefore appropri-

ately neglected here, The result for the liquid pressure is substituted

into Equation (38) and (39) for C° and H at the bubble wall, and

they in turn are substituted intc Equation (36) for the bubble wall |
velocity as a function of radius. These substitutions are made during

the numerical solution of Equation (36) on a computer and are not made

explicitly here. Appendix A gives the detailed procedure.
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The internal pressure Po(R) is as yet unspecified, and can
be assumed to be any function of R . The actual function may accomodate
an adiabatic compression of an initial quantity of gas in the bubble or
scme combination of isothermal and adiabatic compression, or anything
which can be specified in terms of R . This function will be chosen
along with the pressure p, to correspond approximately to the condi-
tions for a bubble in the experimental venturi.

The velocity and pressure distribution throughout the liquid
surrounding the collapsing bubble at any instant of time is found by
using the Kirkwood-Bethe hypothesis. By definition there is a quantity

Z , Where

z(r,t) = r(h+ 2) (41)

~N S

which is a constant along a path or ''characteristic' traced by a point
moving with velocity (¢ +u). In otherwords, along such a path in the

r - t plane the time rate of change of any variable is given by

(.i) =_5_,+ %) (d'” 9 + (cru)

dt) " St orlgr) Tt Sr (k2)

where the subscript ¢ signifies the derivative along a characteristic,
The value of the quantity z(r,t) is known as a function of radius and
time for a particular particle of fluld, namely one on the bubble wall,
Therefore, start with the value of z(r,t) on the bubble wall at some

instant of time, and trace a path through the liquid such that Equation

(k2) is satisfied, and such that z(r,t) remains constant., To do this,
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expand the momentum Equation (28) and the continuity Equation (31) and

add the two together, giving

[ N AN v
| 0U 1 letu) 9’:*_! i s (evuy 2hi s2ue 0 (43)
ot ro Clot gri o or
[
Using Equation (42), Equation (43) becomes
AN B fp
[cuy 4 2esx - _ L/dh) (k)
LA+ R
\at;, r e At i
From Equation (k1)
; .2
"=z ol (45)
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where z 1is a constant in the derivative in Equation (44), into which

h is substituted. The result is

-
Ly rd 7 20 A ! 2
[cul_1 2 zd o204y T
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The relation between radius and time along a characteristic path is
given by
[Er) = leru) (47)
o4
\d '..’,’0
Therefore, there are two simultaneous ordinary differential equations
with u and r as the dependent variables and t as the independent

variable, and related to the bubble wall motion through the constant
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parameter z which, along with the initial conditions on u , t , and
r , is obtained from the instantaneous values at the bubble wall,
Once u , and r are known for a given =z , h 1is obtained

from Equation (45) and then pressure is obtained from Equation (39).

The result is

Plrt) =<Pm+5)[<_§_%f)<_w# (75“30"5’) L1 -8B (18)

The independent variable was chosen as 1t rather than r , as in the
bubble wall solution, because it facilitates the numerical procedure
for solution. If r were used, and if the bubble wall velocity were
greater than the local sonic velocity, then although the character-
istic would move away from the bubble wall at first it actually would
move inward, end then outward only when the local sonic velocity ex-
ceeded the particle velocity. In & numerical solution the increment
dr in radius would have to be changed from negative to positive, while

if time is used, the increment is of course always positive,

E. Surface Tension Effects in Bubble Collapse

It is assumed throughout this analysis that the surface tension
of the liquid in which the bubble is collapsing is constant during the
collepse, It is, however, well-known that surface tension is a function
of liquid temperature and also of liquid pressure. Furthermore, there

is evidence that it is a function of very small quantities of impurities
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present at the liquid interface, A discussion of some of the real pro-
perties involved is then in order here in order to appreciate the possi-
ble effects, but no attempt will be made to analytically introduce these
properties into the theoretical presentation of bubble behavior,
Burdon(69) has extensively discussed the properties of liquid
interfaces and the surface energy., He considers the absorption of im-
purities at liquid surfaces and the requirements for equilibrium to
exist, The molecules in the layer at the surface of a pure liquid
Dossess energy by virtue of having been placad on the surface, where
there is an unequal attraction with surrounding molecules because the
surface molecules do not have liquid attractive forces on one side.
When impurities are present; they might be in the form of a mono-
molecular layer of some fatty substance as on water of a variation in
the concentration of impurity molecules within the liquid and on the surface.
Fox and Herzfeld(7o) have ccnsidered such an organic skin as
& reason for micro-bubble persistence in liquids. The effect of impuri-
ties either on the surface or in the liquid is almost always to lower
the surface tension of a pure liquid. Burdon discusses the fact that
there is a time lag after formation of a new surface before the surface
tension reaches an equilibrium value, The reasons for +tre time lag are
not clear, since the lag is of the order of 106 X the computed time for
diffusion to the surface., A surface, well-protected from contamination,
may continue to fall in surface tension for hours after the surface is
formed. The surface tension of mercury is especially variable when

minute quantities of impurities are present. Burdon indicates that
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probably Kemball’s(7l) value for the surface tension of mercury in
vacuum of 485 dynes/cm at 20°C is the most nearly correct, but values
are reported of from 430 to 515 dynes/cm with experimental accuracy of
1/4 of 1 percent. On exposure to air, the decrease varies from 4O to
50 dynes/cm/minute to & decrease as little as 5 dynes/cm/2L hours.
Therefore, we can conclude that the speed of formation of the bubble
in the venturi, and the constituents of the original microbubble could
have some influence on the effective value of the surface tension at
the bubble interface,

Probably the most important consideration with regard to sur-
face tension and bubble collapse is that at the critical pressure and
temperature of a pure liquid the surface tension is zero. As shown later
the pressures within a bubble can easily reach the critical pressure, and
the temperature is also predicted to rise.

Nowak,(72) in developing an equation of state for water near
the critical point discusses the laws which must be satisfied at the
critical point. One of these is that the latent heat of vaporization
will become zero. In discussing the stability of bubbles during col-
lapse, Plesset(23) mentions this disappearance of the difference between
liquid and vapor phase when the vapor in a bubble is rapidly compressed.
He uses this argument together with his derived instability for collaps-
ing bubbles to explain why & bubble may not reopen, but instead will
fragment. This is reasonable if one considers a local region of very
high-pressure compressed liquid, and the fact that since the latent heat

and surface tension are zero, no additional energy is required to form
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new surfaces in such a liquid when the region suddenly expands. In the
theoretical analysis it is assumed that the surface tension effect in-
Creases the pressure of the tubble contents as the radius becomes very
small, while in real situations where the pressure approaches the criti-
cal point the opposite may occur, The effect becomés less at high
pressure and the lack of an interface promotes greater instabilities

and deviation from spherical collapse. It is shownm, however, that for
rapldly collapsing bubbles the relative effect of a constant value of
surface tension is small in the theoretical analysis, so the neglect of
its variation with pressure will not of itself cause the analysis to

deviate greatly from the physical situation.

F. Viscosity Effects in Bubble Collapse

Some of the possible effects of viscosity on the motion of the
bubble wall during collapse will be discussed here, and as in the case of
surface tension, the results will not be explicitly used in the theoreti-
cal analysis, but rather will merely help to understand and interpret
the probable degree of validity and application of that analysis. Con-
sidered here are the effects of viscosity, other than as ccnsidered in
the numerical analysis, on the assumed spherically symmetric flow of
liquid near a collapsing bubble. There are 2lso other macroscopic

effects which involve the effective viscosity of a mixture of
water and bubbles as occurs in a cavitating venturi. The hydrodynamic
behavior of such a mixture of bubbles in water will differ from that of

pure water because of both the increased compressibility of such a mixture
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and the change in the effective dilationéi viscosity and in the effec-
tive shear viscosity of the mixture. Equations for calculating the
effective viscosity of dispersions of solid pafticles and 6f liquid
particles dispersed and maintained by surface tension have been dis-
cussed by Oldroyd(73) for very low shear rates. "No analysis of the over-
all cavitating venturi flow properties will be attempted here since single
bubbles are the main concern, and the analysis would not obviously con-
tribute to this.
The first consideration is that of the effect of pressure.on

the usual shear viscosity of a liguid. Pressures in the liquid near a
collapsing bubble are high, and therefore if pressure affects shear vis-
cosity causing it to vary from the assumed constant wvalue, then the effect
will be apparent when the bubble is small and the velocity high. It is
the bubble behavior in this region of collapse which is most important

to the study of the demege caused by cavitation bubbles and on possitle
correlations of demage and fluid properties, so such consideration of

(74)

viscosity is appropriate. Bridgman hes investigated the shear viscosity
of many pure liquids at pressures up to 10,650 atm for low shear rates.

For water, relative to the value for water at 0.9678 atm and 0°C, the
viscosity at © 0.9678 atm and 30°C and 75°C is respectively 0.488 and
0.222. At 5800 atm, the viscosity at 0°, 30°, 75°C is 1.347, 0.786,

and 0.367. At 10,650 atm and 30°C, the relative viscosity is 1.126.

Water has a peculiar behavior in that for temperatures below 30°C, the

viscosity decreases with increasing pressure for pressures up to about

1000 atm, and then increases. For higher temperatures it increases with
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increasing pressure for all pressures above one atmosphere. Therefore,
the shear viscosity in the vicinity of a cavitation bubble in water at
30°C can increase by the ratio 1.126/0.488 = 2.3 and possibly even more.
Since the viscosity appeared analytically to have a retarding effect on
the bubble collapse (although later numerical results qualify this state-
ment), the assumption of a constant viscosity with respect to pressure is
Probably a conservative one when seeking to show that collapsing bubbles
can cause damage to adjacent solids. However, when considering the
Possible temperature rise in and near a bubble, the variation of viscosity
with temperature may counteract the change with pressure. The viscosity
of water decreases by about a factor of two for a temperature rise from
30°C to 75°C over the entire pressure range considered by Bridgman. In
conclusion then, a detailed consideration of +he variation in shear vis-
cosity would be difficult to apply to the calculations of bubble wall
velocity and is not warrsnted here, since the variation with pressure

and temperature tend to cancel each other for collapsing cavitation
bubbles.

The variation in viscosity of the water in the venturi with
dissolved air was considered since the experimental system is operated
with tap water which initially is essentially saturated with air, Deaera-
tion equipment on the system can reduce the air content to about 30 per-
cent of the saturation value. Suciu, Zoss and Sibbitt(75) investigated
the solubility of nitrogen in water for temperatures to 700°F and partial
gas pressures to 5000 psia. A shallow minimum in the curve of solubility

vs temperature was found for all partial gas pressures, at just below



-54-

200°F; then the solubility increased without limit as the critical tem-
perature of water was approached. At a constant temperature of 100°F
the solubility increased from about 0.1 cc nitrogen per gram of water
(STP) when the partial gas pressure was 100 psia, to about 30.0 cc
gas/gm water at 000 psia (STP). In other words if the water in the
venturi is saturated with air at about atmospheric pressure and if the
air solubility behaves like the nitrogen solubility, then the water in
the high pressure region surrounding a collapsing bubble is highly under
saturated in the local high pressure region., It then remains to pre-
sent information on the viscosity of air-saturated water at high pres-
sures, Unfortunately no such data were found at nigh pressure, but
there are data reported for atmospheric pressure.

Caw and Wylie<76) reported the viscosity of air-saturated
water relative to that of air-free water. They found that the effect
of air on the kinematic viscosity of water at one atmosphere pressure
does not exceed 13 parts in 105, and further, that the effect of the
pbressure of one atmosphere of air over the water did not change the
viscosity by more than a few parts in 105. The results apply for tem-
Peratures of 20° to 30°C. No mention has been made of the possible
diffusion of gas in the vicinity of the bubble, due to gas concentra-
tion gradients or to pressure gradients, because the very short times
involved during the collapse tend to negate such contributions. There-
fore, even though the effect of dissolved gas on the dynamics of the
collapsing bubble system is uncertain, it probably is less important
than some of the other assumptions which are made, and will, therefore,

be neglected here.
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The viscosity term appearing in the usual Navier-Stokes equa-
tion of motion has certain inherent limitaticns in its applicability to
real hydrodynamic situations. In the derivation of the viscous equation
of motion according to Lamb,(77> a mean pressure p 1is defined as the
arithmetic mean of three mutually perpendicular instantaneous stresses
acting on a fluid element, but this definition has certain implications
as will be shown. The pressures in the three principal directions are
related to the fluid element defcrmation according to Stokes by a gen-
eral linear relationship, wnich for the X direction in rectangular
coordinates is, as expressed by Tisza(78)

77 ——T 2//1?’4 —/,/,c di (49)

X

where ?7 is the vector velocity and u its x component, and similar
expressions apply for the Y and Z directions. The two quantities
H and up' are here simply assumed constants of proportionality between
stress and d-Tormation, and Py is the hydrostatic pressure. For a static
fluid then, the three component pressures are all equal to each other
and to the usual hydrostatic pressure, If, for a fluid in motion, the
mean pressure p 1s used in describing the fluid behavior,; then Equa-
tion (49) gives

i b
‘*PXX# 7?117‘,:;

I div ¥ (50)

2

(»5 -

If k is defined by

(/ig/& —r/(/L’/ = "é (51)
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and the continuity equation is used, Equation (50) becomes

PP +4dP (52)

> P dt

Therefore, if the fluid behavior is given by Equation (49) and if also
the mean pressure is defined as in Equation (50) then the pressure is
dependent upon the time rate of change of density as shown in Equation
(52). Stoizes, in a quotation given by Tisza,(78) indicated that the
quantity k should be zero if in a uniform dilation the pressure is
to depend only on the instantaneous value of density and temperature.
It is a usual assumption of hydrodynamics and the Navier-Stokes equa-
tion of motion to make k = O . Stokes justified this by saying that
in most fluid-flow problems the density is nearly constant or at least
is changing slowly with time, If this assumption is not made, then the
Navier-Stokes equation becomes the following, as given by Liebermann,(79)

in the absence of body forces,

oVo_J oradf’#—/_& V2\7+ M?‘/ilz\ ar&d<d"‘/ —\7) (53)
pt ¢’ e ’

the constant § is the usual shear viscosity, and up' 1s called the
dilational or compression viscosity. For an ideal monatomic gas it
can be shown(86) that k is exactly zero, so that pu' = -2/3 u .

The justification for k = 0 given by Stokes does not apply
in many situations where either the pressure change is sufficient to

significantly change the fluid density, as in the following numerical

results for cavitation bubbles, or the pressure changes very rapidly
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with time as in the ultrasonic studies of energy absorption in liquids
Oor in any case involving shock waves in fluids. Karin and Rosenhead<8o)
in a review of the quantity u' or k ; which is frequently called the
second coefficient of viscosity, discuss the importance of including u!
in determining energy asbsorption of waves in fluids. They point out that
in all experiments to measure asbsorption in gases or liquids since the
first in 1898, the experimental values of absorbed energy were larger

than the values calculated, with the exceptions of mercury and liquid

argon, on the basis of Stokes coefficient

L = 2w (54)

where CO is the sonic velocity and o is defined by

-2L X

Jy=J. e (55)
and JX is the intensity of a plane sound wave after traveling a
distance X ., Equation (54) shows that if the density is relatively
high, as it is for liquids as compared to gases, then the absorption
will be significantly measurable only at very high frequencies, At
high frequencies however, or high rate of change of density, the second
viscosity coefficient becomes important, and therefore Equation (54)

(79)

does not hold., Liebermann gives as an approximation for the ab-

scrption coefficient

oL = of (u+id) (56)
2@l
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(81)

Using a method proposed by Eckart, Liebermann measured the ratio of
the two viscosities, p'/u , for twelve liquids, mostly at a frequency
of five megacycles. The ratio was positive for all liquids, instead of
-2/3 as it would be from Iquation (51) if k were set equal to zero.
He concluded that it was definitely necessary to include the dilational
viscosity, and that when it was included, Stokes absorption theory
agreed well with the experimental results.

For at least one liquid the ratio of viscosities was a func-
tion of frequency, with the ratio apparently increasing with decreasing
frequency. Liebermann explained this by including a relaxation effect
in the dilational viscosity. The relaxation time for shear viscosity
is usually assumed to be the mean free travel time of the molecules, or
on the order of lO—12 second, and is thus not significant at megacycle
frequencies, When appropriate correction was made for the dilational
relaxation, the results gave a dilational relaxation time about 2 x 10~'
second for the liquid ethyl formate. Karin and Rosenhead(8o) discuss
some of the proposed molecular mechanisms for dilational relaxation,
and give values of wu’' for water at 17 megacycles of 0.052 poise at
4°C and 0.026 poise at 20°C, Libermann gave the value of u'/u for
water at five megacycles as 2.4, independent of temperature from L4°C
to 25°C, Litovitz(82) further discussed the theory involved in the
molecular structure of compressed liquids, and has separated the con-
tribution to compressibility into the relaxation effect due to struc-
tural relaxation and the effect due to so called solid-like compression

of the liquid lattice, He quotes a ratio for the relaxational




compressibility to the total adiabatic compressibility of water as 0.61.
Litovitz also mentions that liquids exhibit shear rigidity when sheared
at high rates, with a shear relaxation time comparable to the structural
relaxation time.

The question now occurs as tc what significance these effects
may have with respect to cavitation bubbles. So little comprehensive
data is available that at most it can only be estimated whether or not
such effects are important, without attempting for the present to quan-
tify them. As a typical example, consider the result for a cavitation
bubble collapsing from an initial rajius of 50 mils in compressible
water at a static pressure of one atmosphere, and containing gas which
is compressed adiabatically from an initial pressure of 1.0 x 1073
atmosphere with » = 1.3, As will be shown later, ~he maximum wall
velocity is slightly less than the sonic velocity in water at one
atmosphere., Taking the ratio of wall velocity to instantaneous bubble
radius to obtain an appropr_ate frequency, the frequency is about
7 x 107 sec! . The pressure in the liquid at the bubble wall is
1.26 x 104 atmospheres giving a liquid density 1.27 times larger than
at one atmosphere and the total time elapsed is 1.1 x lO"l‘L seconds.,

Therefore, the combination of a large change in density in a very
short elapsed time suggests that the dilational viscosity effects may
be of importance in collapsing cavitation bubbles. As the bubble wall
accelerates inward the appropriate frequency becomes very large, and
1t is conceivable that dilational and shear relaxational effects might

also become important in some liquids. The possible magnitude of the
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compressibility term omitted from the Navier-Stokes equation in the
numerical solution will be considered later. If the second viscosity
effect were included there also, then the magnitude of the last term
would be from 3.4 times as large for water to several hundred times as
large for carbon disulphide when the time rate of compression is high.(79)
In view of the magnitude of these relaxational effects and
the definite possibility that such effects can occur in cavitation
bubbles, some questions arise concerning the liquid behavior, For ex-
ample when a liquid undergoes an extremely high shear or compression
rate as in the vicinity of & small radius bubble during collapse, and
the liquid exhibits relaxation, by what mechanism does the liquid
relaxation occur? The molecules of liquid could undergo rotation, or
transfer from one so called lattice site to another with an accompany-
ing release of energy. It is conceiveble that this energy is emitted as
discrete quanta with wavelengths in the visible light spectrum, and that
this be a mechanism for sonoluminescence, It is interesting to note
that the second viscosity effect for carbon disulphide is very large,
and also the sonoluminesence from carbon disulphide in water is large
when compared to water alone., However, other liquids having high
second viscosity ratios do not have extremely high sonoluminescent
intensity. A detailed survey of the molecular behavior of liquids and
liquid mixtures, including the frequency dependence of the relaxation
effects is of course not warranted here, but its desirability is

certainly suggested by the above analysis.




III. RESULTS OF NUMERICAL ANALYSIS

A. Behavior of Characteristic Curves

The variables at the bubble wall are evaluated independently
of the liquid behavior away from the bubble wall. This method is pos-
sible because of the Kirkwood-Bethe assumption on propagation of the
characteristic constant quantity r(h + u2/2) at known velocity (c + u).
If this condition were not analytically imposed on the equations for
motion of the bubble wall, then the motion of the entire liquid field
and the wall would have to be considered at the seme time in the numer-
ical snalysis. As it is, the values at selected increments of bubble
radius are computed first and used as initial conditions to start each
characteristic curve. Once the initial values of radius, velocity, and
pressure are known, the characteristic path is determined completely
independently of all other liquid or bubble behavior. The relation of
one characteristic curve to all the others is made through the variables
time and location along & characteristic path. Consider the plane of
liquid redius vs time. The bubble wall is represented by a single curve
in this plene, and for radii less than the bubble radius at a given in-
stant of time, there are no characteristic curves defined -- the curve
for the bubble wall is the boundary of the region in the entire r - t
plane in which the characteristic curves exist. Each point in the re-
gion has & value of the quantity r(h + u®/2), and only one value can
exist at any liquid particle position r at a given time +t. The path
of those points for which this quantity is a constant is the character-

istic path, and all such paths originate on the bubble wall.

-61-
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In Figure 1 the bubble wall (for parameters of a reference
bubble used throughout this chapter) is represented by the curve
through the circled points, which merely indicate the origins of each
of the characteristic paths which extend into the liquid. It is iImpor-
tent to note that as the bubble becomes smaller, the change in time both
between the points of origin of the paths and along the path becomes
very small. It is essential that the paths be properly located in time
so0 that there is no incorrect situation caused by numerical inaccuracy
where two characteristic curves cross. This situation would represent
the fact that two different values of r(h + u2/2) exist at the same
liquid particle at the same instant of time and is of course physically
impossible. Considereble care is required to retain sufficient numer-
ical accuracy in the normalized time to prevent such incorrect overlap.
The numerical procedures involved in this are discussed further in
Appendix III. However, since each path can be followed out as far as
desired without reference to what happens at the bubble wall after it
leaves, it is conceiveble that a path originating at a later time over-
tekes a preceding path. Such & possibility has been indicated by
Fitzpatrick and Strasberg(su) who indicate that this situation repre-
sents the formation of a shock in the liquid, which forms after the
bubble wall has been stopped either by the common, but artificial,
assumption of a small concentric rigid sphere or by assuming a sudden
pressure rise in the gas contained within the bubble. No overlap of

characteristics was ohserved for the range of parameters chosen here

during the collapse of the bubble. The propagation of a pressure pulse




-63-

*sIajewaxsy aTqqng 2oUaIaJoY
I0F TO°0 03 UMOQ TTDPEY STAqNg POZTTUWION JOF SWYL POZTTEWION SA SU3BJ OF3FSTIL308IBY) JO UOTF8O0T ‘T oamBld

(*/%/4) 3INIL  GIZNVWHON

o vel L A 4] € vei L2 44 I'vgl O'vEl 6'eg! geel
T T T T T T N T Y T T T T 100

(4144
W OIXO0G="Y
04 wyp|s"d
i o yaivm ¥od 'Y lz00
I= %0/.0 NOISN3L 3OV4UNS
[ ]
= 7/7 ALISOOSIA
- 1vd NETRITY .

U3ZIVNYON

- P Tvm T1eene 800

- o -

- 0 . .

i > L &

l : dro &
%
~
g




-6l-
or shock outward into the liquld subsequent to the arrest of the bubble
wall motion i1s considered later.

Figures 1, 2, 3, 4, are plots of the :haracteristic paths for
succusively smeller bubble radii. Each succeeding figure has been plot-
ted on an expanded time abscissa but all with the same time normalization
and referred to the same zero point at the start of bubble collapse.
Figure 2 1s expanded by a factor of 250 over Figure 1, 3 by a factor 20
over Figure 2, and 4 by a factor 50 over 3, so that if Figure 1 were
plotted on the seme scale as Flgure h, it would have an abscissa 250, 000
times longer. Such a portrayal demonstrates the inherent difficulties
in the calculations, especlally when interpolation between the curves
is necessary to dbtéin the veriebles for a given fixed velue of time.

The slope of those curves which are marked with circles is
the bubble wall velocity dR'/AT' = U' . The slope of the characteristic
peths is (dr'/dt')c = (u' + ¢'), the velocity of propagation of the
characteristic. Since the liquid particle velocity, u, 1s alweys nega-
tive for collapse, the quantity (u + c) becomes zero when the Mach num-
ber Iul/c , becomes equal to 1.0. This occurs in Figure 1 for a radius
of 0.02, but the horizontal slope is not visible on the scale of the
figure. For smaller bubble radii when |u|/ec > 1 , the slope
of the characteristic at the bubble goes negative as seen in Figures 2
through 4. A negative slope represents & negative propagation velocity
as viewed from a fixed frame of reference so that even though the
characteristic moves away from the bubble wall, it actually moves inward

toward r = 0. This continues until the pressure along the characteristic
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rises enough so that the sonic velocity becomes large, and therefore the
Mach number decreases even if there were no decrease in velocity. Also,
the pressure rise, and therefore also the rise in h s near the bubble
wall is very rapid so that for the quantity r(h + u2/2) to remain con-
stant when h 1is increasing the velocity u must decresse rapidly.
The result is that the characteristic moves inward for a distance of
only about two tenths of the bubble radius, then reverses and moves
outward. This rapid reverse in direction was one of the most difficult
Properties of the solution to evsalusate numerically with the excellent
accuracy desired as shown by the curves.

Figure 5 shows the liquid particle velocity and Mach number
along several of the characteristic paths shown in Figures 1 through 4.
The solid lines are normalized velocity and the dotted lines are Mach
number at the same radial position. It is seen that for normalized
bubble radii less than about 10‘3, and for the conditions and parameters
listed which were taken as a reference set, the absolute value of the
liquid velocity along a characteristic path increases as the radial
pPosition decreases, then the absolute velocity decreases with the char-
acteristic still moving inward and finally the characteristic moves
outward and the absolute velocity very rapidly approaches zero. The
Mach number at the bubble wall is considerably less than the normaslized
velocity for small bubble radii because the pressgre and therefore sonic
velocity rise rapidly as the bubble collapses. A sharp pressure pesak
occurs along the characteristic path near the bubble so that even though

the absolute normalized velocity increases, the Mach number starts
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redii less than 1 x 10~

increases when the viscosity is increased.
This same behavior is observed for viscosities from 2 to at least 500
times the viscosity of water, other parameters remaining the same. A
more extensive discussion of the effect of varistion of parameters on
only the bubble wall variables will follow. It is noted that while the
actual wall velocity increases with increased viscosity, the wall Mach
number decreases because the liquid pressure at the wall is increased,
for a given bubble radius, when the viscosity is increased, thereby
increasing the sonic velocity.

For values of bubble radius less than lOﬁS, Figure 6 shows
considerable variation in the velocity curve. This is attributed to
the interpolation method for finding values of the velocity at constant
times by selecting points from many characteristic curves. For such
very small bubble radii, the time increments are too small to retain
sufficient numericael accuracy. However, the method of computation is
such thet the characteristics leaving the wall at earlier times are
s8till well defined, and are not affected by later leaving characteris-
tics, so the solutions are valid for all greater bubble radii. The fact
that the curves at constant times are smooth for all larger bubble radii
indicates a valid method of interpolation. The curves for the behavior
only at the bubble wall are not in any way affected by the behavior of
the numericel solution on the characteristics because the two are
analytically distinct.

In considering the curves for velocity for pu =1, it is

seen that the slope du/dr at the bubble wall appears to decrease with
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decreasing from the bubble wall and continues to drop sharply along
the path. At the point where the characteristic curve for Mach number
reaches a minimum radius, the quantity (u + ¢) is zero and the Mach
number should be exactly equal to one since the outward propagation
with velocity ‘¢ is countered exactly by thg inward propag;tion of
velocity (-u) at this time. All the charactérisfics are consistent in
this respect as evidenced by the fact that the minimum radius on all
the Mach number curves occurs at Mach number = 1.0 in Figure 5.

The physical meaning of the characteristic curves is sometimes
difficult to appreciate. It is more desirable to have the equivalent
of an instantaneous picture showing the variables as a function of liguid
radius. The method of interpolation along each characteristic to find

the variables at a fixed time is given in Appendix III and the results

are discussed in the following.

B. Pressure and Velocity Fields in the Liquid During Bubble Collapse

The curves in Figures 1 through 5 are replotted in Figure 6
in terms of Mach number and normalized velocity vs normalized liquid
radius at several selected fixed instants of time. The identified points
represent values at the bubble wall and the curves then represent the
velocity of the liquid when the bubble has collapsed to that radius.
Again, the solid lines are normalized particle velocity and the dotted
lines are Mach number. In addition to the previous reference values of
the paramcters, curves are shown for an increase in the liquid viscosity
to 100 times that of water. The most important observation from these

curves 1s that the bubble wall normalized velocity for normalized bubble
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decreasing bubble radius, but this appearance is because of the log
coordinates. The numerical value of du/dr actuslly increases dras-
tically as radius decreases, thereby increasing the viscous pressure
term at the bubble wall. It is seen however, that for the same value
of bubble radius when the bubble radius is less than sbout 1 x 10-3,

the slope du/dr is less in the liquid at the wall when the viscosity

is larger. From Equation (18), the contribution to the pressure in the
liquid at the wall due to viscous stresses is given by 2ulu/dr , which
for the incompressible liquid at the bubble wall is simply aer/R o

When the incompressible solution is used, an increase in viscosity causes
a decrease in bubble wall velocity as expected. However, in the com-
pressible case, the contribution to the pressure at the wall from viscous
effects is given by Equation (40) as =LuU/R - (hpU/BCE)(dH/dR) , but

the last term here has been neglected in the numerical solution. It

will be shown in the present calculations that the wall pressure (and
therefore also the enthalpy, H) increases more rapidly with decreasing
bubble radius when the viscosity is increased. Therefore, the term
containing dH/dR increases and the net effect of the entire term

above, which was neglected, would be to tend to counteract the effect

of the viscous term which was included. Unfortunately, no analytical
presentation has been obtained which could definitely show that en
increase in viscosity would or would not have the effect observed on

an analytic model which included both terms, even though a possible
reason has been given above, so that the validity of the numerical results
of a viscosity increase in describing the behavior in a real physical

situation remains in doubt.



-74_

Consider now the variation in velocity at a fixed point in
the liquid starting from the instant when the bubble wall passes that
point. For example, when the bubble wall passes r' = 1 x lO_2 s the
normalized liquid veloeity i1s 1.95. By the time the hubble wall has
reached 1 x lO_5 , the velocity at r' = 1 x lO“2 has dropped to 1.02
and remeins at essentially that value as the bubble continues to col-
lapse. Similar behavior occurs at other points in the liquid, but the
ultimate constant velocity at each point is different. TFor values of

normalized radius greater than about 1 x 10“2- there is little differ-

P
ence in this ultimate velocity for an increase in viscosity as shown.

The variation of Mach number near the bubble wall is differ-
ent from that of velocity. At any instant of time after the normalized
bubble radius is less than gbout 0.5 there is a large pressure peak near
the bubble wall. Therefore;, the sonic velocity within the pressure peak
is very large and the Mach number accordingly small. The plot of Mach
number vs liquid redius then shows an extremely rapid drop near the
bubble wall as seen in Figure6. The Mach number then remains essentially
constant throughout the liquid out to a normalized redius of about
1 x 1072 ; Where 1t then drops in about the same manner as the liguid
velocity, with increasing redius. At a fixed point in the liquid, the
Mach number drops rapidly from the value at the bubble wall after the
wall passes and then remains constent as the bubble continues to col=-
lapse, in a manner similar to the velocity. However, the Mach number

is different from velocity in that for all points in the liquid at radii

less than about 1 x 1052 the Mach number drops to about the same value
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after the bubble wall passes, namely 0.35. In interpreting such behavior
in the liquid it should be recalled that the plot of Figure 6 is on log
coordinates so that the distance being considered is less than 10™2 of
the original bubble radius or a distance less than 5 x lO-u inches for
the reference bubble under consideration, where the Mach number remains
constant.

The velocity in the liquid at e fixed time varies, as indica-
ted in Figure 6 to approximately l/(r')l'u° The bubble wall velocity
in an incompressible liquid varies as l/(R')l°5 (Figure 11) and the ve-
locity in the liquid et a fixed time varies according to Equation 4 as
l/(r')e. The bubble wall velocity for the reference parameters in com-
pressible liquid, for bubble radii less than sbout 107 veries as 1/(Rr? )"55 .
An spproximate, inviscid, analytic result of Gilmore(ss) for compressible
liquid gave l/(R')°5° Hickling and Plesset(66) reported the wall velo-
city to vary as l/(R')’785 for the empty bubble in inviscid liquid.
Therefore, the effect of viscosity in water for an incompressible asnalysis
does not significantly change the bubble wall velocity as a function of
bubble radius. For the compressible case, the bubble wall is definitely
slowed down by the effects of compressibility.

Figure T is & plot of liquid pressure vs radius for seversal
bubble redii, and for several liquid viscosities. When the viscosity
is one times that of water, 1t is seen that the pressure at the bubble
wall is relatively low, but rises extremely repidly by almost three de-

cedes at a distance into the liquid of somewhat less then twice the bubble
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redius. The pressure in the liquid at a fixed point rises as the bubble
wall passes, then remains at a constant high value &8 the collepse pro-
ceeds. The pressure varies with r' , as indicated on Figure T, &s
l/(r')l'a. When the liquid viscosity is inecreesed to 100 times that of
water, the pressure at the wall increases faster with respect to bubble
radius. The peesk pressure near the wall, however, is about the seme as
thet for the smaller viscosity, and the constant pressure &t a fixed
redius in the liquid after the wall has passed is alsoO the same. There-
fore, when considered with the results for velocity and Mach number, &an
increase in viscosity has 1ittle effect on the liquid behavior other
then at or very near the bubble wall.

Poritsky(l9) defined a viscosity parameter in his analysis for

incompressible liquids according to

/_ du
2 Ro/E(B- 1)

and indicated that when u' > 0.46 , the bubble would not collapse with

infinite velocity, but would slow down and teke infinite time to collepse.
He further stated that if surface tension were also included the bubble
would always collapse in & finite time. Using the perameters of Figure

T, the limiting viscosity would be 1468 times as large as that for water.
The pressure, only at the bubble wall, for this case is also plotted in
Figure 7, where surface tension is included. It is seen that the wall

pressure is above that for both other curves down to & normalized bubble
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radius of ebout 4 x 1072 s &t which point the wall pressure drops sharply
to exactly 1.00 and remains there as the bubble continues collapsing.,
The normalized wall velocity at this point is about -5 x 1077 , which is
equivalent to three inches ber second, or the wall has essentially stop-
Ped. The normalized viscosity parameter can be increased by decreasing
the initial bubble radius, the liguid density, or the Pressure differ-
ential causing collapse as well as by increasing viscosity. It is of
interest to note that the bubble wall slows down and nearly stops even
though surface tension is included (Poritsky's resul=s for an incom-
bressible liquid showed a continued collapse in this case), Also, the
numerical solution for an incompressible liquid including surface ten-
sion indicates a sudden slowing down of the bubble wall when R' = 0.46,
As & check on the numericsl accuracy of the incompressible
solution, which is the same method as that used for the compressible
case, results were obtained for g Rayleigh bubble in inviscid water
without surface tension, and compared with the exact analytical result
for complete collapse of an empty bubble. The computed collspse time
was less than the analytic time by only 0.082 percent when the bubble
radius was teken down to the point when the computed time for that pro=-
gram no longer changed within the numerical significance used. This
result is considered indicative of the appropriateness of the Runge-
Kutta type numericsl solution for this type of Prot’lem, where many
increments are made in the independent veriable, :.e., bubble radius,

. -6
At a normalized bubble radius of 1 x 10 , the computed normalized
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velocity is -8.16 x 10t which is only 0.033 percent lower than the

exact analytic result given by Equation (11), and this after a thousand
or more computed steps in the bubble radius. A detailed numerical analy-
sis of the non-linear incompressible or compressible equations as pro-
grammed on the computer to enable one to say with certainty whether it

is the numerical procedure which caused a difference with other published
anslyses is extremely difficult. Hence the other alternative of compar-
ison with en exact solution was used. This comparison indicated no
evidence of & numericel inconsistency in the results, and yet as will

be explained later the results appear to differ slightly with other

enalyses. NoO explanetion 1s available at this time.

C. Bubble Collespse with Adiebatic Internal Gas Compression

Figures 8 through 10 show the collaepse behavior of a bubble
with the same set of parameters as before with the exception that the
internel gas pressure is not zero, but varies from an initial value of
1 x 10~ stmospheres in proportion to (1/R'2)1:3, In Figure 8, the
dashed line represents the bubble wall velocity and the solid lines the
velocity of the liquid awsy from the bubble wall at various times. It
is seen that the wall motion is abruptly stopped when there is internal
gas in the bubble. The wall velocity decreases much more rapidly at
first than the nearby liquid velocity. This behavior is attributed to
the compressibility of the liquid and the finite velocity of propagation
of a disturbance, in this case the pressure rise at the bubble wall. As

a result, the velocity gradient in the liquid at the bubble wall changes
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sign. The numbered circles on the bubble wall curve represent selected
values of time so that the velocity curves can be compared with the Mach
number and pressure curves at the same instant.

Figure 9 is a plot of the Mach number vs liquid radius. The
maximum value of Mach number occurs at & normalized bubble radius of
2.3 x lO-2 , Whereas the maximum wall velocity did not occur until the
bubble wall radius was 1.6 x ].O"2 . The Mach number on the curve num-
bered five has & minimum near the wall, and a maximum farther away from
the waell. These results compare with those of Hickling and Plesset(66)
who used a different numerical method from the Kirkwood-Bethe assump-
tion of propegation used here, and who neglected both surface tension
and viscosity effects. Actually, surface tension and viscosity for the
particular values of parameters used here do not affect the general
bubble behavior significantly, but as shown before, at least viscosity
can have a significant effect within a realistic range of parameters.
The Mach number and the velocity at a radius equal to the initial bubble
radius rise as the bubble starts to collapse, and then fall to constant
values as the collepse proceeds. The approximetely constant values at
r/R = 1.0 after the bubble redius is less than 0.l is less than about

o
10 ft/sec.

The corresponding numbered curves of liquid pressure vs

redius are shown in Figure 10, elong with some additional curves at

other times. The pressure gradient at the bubble wall becomes zero &t

the seame time that the bubble wall reaches its maximum velocity. This

is of course entirely consistent with the equation of motion, Equation (28),
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which was used in the analysis. The behavior of the liquid after the
velocity goes to zero at the wall and then becomes positive is that of
the familiar bubble rebound, and will be considered in more detsil later.
During the collapse, the pressure in the liquid at a fixed radius rises
rapidly as the bubble wall passes, and then remains relatively constant,
or at least rises less in proportion to the.bubble wall motion. Recall
however, that time is not proportional to bubble radius. At a bubble
radius of 1 x 10™° +the normalized time is 124.00119, and at the final
minimum radius of 9.8 x 1072 time is only 134.29%03. The maximum
liquid pressure at a radius equal to the initial bubble radius is 12
atmospheres, and st a radius 10 times the initial radius the maximum
liquid pressure during collapse is only 1.1 atmospheres, or 10 percent

above the initial liquid pressure.

D. Bubble Wall Velocity with Various Parameters

The velocity and Mach number at the bubble wall for various
liquid parameters are plotted in Figure 11. Consider first the three
curves for velues of viscosity equal to zero, one, and one hundred times
that of water. All other parameters have the reference values indicated
unless otherwise specified on the sepsrate curves. For normalized
redii less than 1072 , the velocity is increased with viscosity,; as
noted previously in discussing the velocity in the liguid away from the
bubble wall. For larger radii, the opposite behavior exists. This
tends to confirm the previously stated reason for the anomoly, namely

that it is caused by the neglect of the term proportional to the rate of




85-

BUBBLE WALL VELOCITY & MACH NUMBER lul/c, or ll/c

/1|lll|| T T T TTTT
/
/

Lo easl

1

L1t tddl

Il

D' 3
INCOMPRESSIBLE SOLUTIONS ]
$4/He=100 .
l.o:_— __.
- ———VELocy 3
- ————MACH NUMEER 1
| PARAMETERS UNLESS ]
|  OTHERWISE MARKED ARE: R,0.0x 1%
VISCOSITY  ft/fhesl
I0'-  SURFACE TENSION /%< -
F %, pe FOR WATER / ]
: R aim. R=0 INCOMPRESSIBLE [g-cxlo“atm. :
. SOLUTIONS
F R=50xI02in N . .
. 73  Rexi0® otm, ye13 R *Ixi0atm. 4
Y3
i 4 12 atql 1 i Lillll' i 1.4 L iif i [l I |
”ﬁﬁ 10
NORMALIZED BUBBLE RADRSS R/R,
Figure 1l. Bubble Wall Velocity and Mach Number vs Normalized Bubble

Radius for Reference Bubble Parameters Except Where Noted
Otherwise on Individual Curves.



-86-

change of enthalpy, H , at the bubble wall. The rate of change of
H would be large only when both the velocity is large and the radius
is small enough to cause the wall pressure to be large. The Mach
number is seen to behave exactly opposite from the velocity - decreasing
at a given bubble radius with an increase in liquid viscosity.

When the viscosity is increased to the limiting value stated
: 5y Poritsky(l9), the wall velocity decreases in a manner very similar
to the sudden decrease caused by the presence of gas within the bubble.
It is apparent that there is a cut-off point in viscosity somewhere
between u = 100 and u = 1468 times that of water. The limiting number
1468 would change of course if R, p, or (Po - P,) Wwere to change.

The incompressible solution gives a velocity at the bubble
wall which is 17 times larger than the compressible solution at
R' - 1 x 10-3. Similarly, when a gas is included, the incompressible
liquid collapses to a radius which is 0.18 of the minimum radius for
the compressible liquid, when the internal gas pressure varies in the
same manner with bubble radius. If the initial internal gas pressure
is decreased, the bubble collapses farther and attains a greater wall
velocity. A decrease from 1 x 10-3 atm to 1 x 10-4 atm causes the
maximum wall velocity to increase by a factor of 2.6.

A decrease in the "nitial bubble radius, R has a similar

o’

scale effect as an increase in both the viscosity and surface tension.
Figure 11 includes the wall velocity for R = 0.10 mils. The curve
indicates slightly higher velocities for normalized radii to 1 x 10-2

where 1t meets the standard curve for Ro = 50 mils, then the velocity
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for Ry = 0.10 mils increases more rapidly than the standard curve
as the radius continues to decrease. An increase only in the surface

. tension, up to six times that of water, causes a very slight increase
in wall veloéity which cannot be distinguished when plotted on Figure 11.

An increase in the liquid pressure causing bubble collapse,

from 1 to 10 atmospheres, causes a proportionately greater velocity in-
crease at the start of bubble collapse than after the bubble is very
small. At R' = 0.6 it increases the wall velocity by a factor of 3.2,

5

and at R' = 1 x 10 © the wall velocity increases by a factor 1.48.

E. Pressure Pulse from Rebounding Bubble

It has been shown by Hickling and Plesset(66) that the peak
pressure from a gas bubble rebounding in a compressible liquid is at-
tenuated in proportion to l/r . Two cases from the present numerical
analysis are included here for gas pressure within the bubble for both

. compressible and incompressible liquids, and are summarized in the
following teble.
BUBBLE COLLAPSE WITH INTERNAL GAS

R, = 50 x 1070 in, o, u for water; p, = 1 atm pi(R') = po(R'3)'1-3

Compressible Incompressible
Po = 1 x 1073 atm P, = 1x 107 atm
Prax = 6-77 x 10* atm Plax = 5-51 x 101 atm
R'pip = 9-82 x 1073 R ;o= 1.76 x 107
) Po=1x 10‘“ atm P = 1x lO"u atm
Ppax = 5.82 x 10° atm Ppax = 1.170 x 10 atm
R iq = 3-13 x 1070 R'_,. = 1.369 x 107
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The peek pressure on the rebounding pulse from the indicated radii is
shown in Figure 12 for the two compressible cases. The incompressible
results have been omitted as they are so much different and are not
really appliceble. The initial bubble radius is significant in two
respects. First, the magnitude of R, has a scaling effect on the
results, through the viscosity and surface tension parameters, which
can be importent especially for smsll bubbles. BSecond, the pressures
have previously been plotted vs normelized radius, but the actual dis-
tance a pressure pesk wlll trevel will be greater 1f the initial bubble
radius 1s larger. This is of particular importance in estimating the
pressure applied to adjacent solid surfaces in regard to cavitation
damege. However, because of the scaling effects, each initiel size
bubble requires a separate computer solution, unless an sppropriate
scaling law can be established.

A comparison was made between the total energy available and
the energy used to compress the gas within the bubble according to the

known pressure variation. The available energy is given by

R, Ro
/’7;(477#)4% /_a_g?(wffez)dk —
R
Rmin

Rm;ﬂ

min

wrworE (R 1) +_g_7rR5(R'3 -))

1 _ . . e .
where R min = Rmin/Ro and Rmin is the minimum radius when the gas
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has stopped the bubble, obtained from the computer solution. The energy

used to compress the gas is

Rs
Ro 3 /43 2 3 ~ ,3,9
Pdv=| B/R2\ (4TR )R = +TTRRs | Ruin -1
L Rj 09 Rlﬂg

Rmin Rmin

The difference in the two energy quantities is the viscous dissipation
in the Incompressible case. In the compressible case the difference
represents the viscous dissipation plus the kinetic and pressure energy
in the liquid. As shown in Figure 8, the bubble wall velocity becomes
zero before the liquid velocities farther from the bubble so that there
is still kinetic energy.

For the bubble in the table, when Po=1x lO'LL , the total

avallable energy is 6.51 x lO'LL ft - 1bf for essentially all the mini-
mum radil shown since the energy is proportional to the difference of
the cubes of the maximum and minimum radii. The energy to compress the
gas in the incompressible liquid, when Pp=1lx 10-4 atm, 1is

=l

6.40 x 107" ft - 1bf, indicating that 1.69 percent of the initial energy

is lost to viscous effects at the bubble wall. TIn the compressible
liquid the available energy 1s the same when Py = 1lx lO"21L atm, but
the energy to compress the gas is only 0.383 x 10-4 ft - 1bf since the
minimum radius is 22 times larger. Therefore, at the minimum redius,
Ol percent of the bubble collapse energy exists as liquid potential and
kinetic energy, or has been degraded through viscous effects. When the

initial gas pressure is increased to 10~2 atm, the lost portion in the
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incompressible liquid remains the same at 1.69 percent. The portion
in the compressible liquid is reduced to 79 percent.
The viscous dissipation per unit time in the incompressible

liquid is given by(l9)

o0

2 2 ro— 2
{gu%2(¢Wf)d —/6gml(R

R

Note that this is given as energy dissipated per unit time at a given
bubble radius and wall velocity. The total energy dissipated during
the collapse can only be obtained by numerical integration because the
velocity, U, is not known as a function of radius, R. However, we
can obtain the instantaneous dissipation rate at the maximum well velo-

-k -4

city. For example, when p,=1x10 ", and R' = 1.85 x 1077,

2.19 x 10% ft-1bf/sec

Meximum Viscous Energy
Dissipation Rate for Bubble
in Incompressible Ligquid.

39.8 Horsepower

29.7 Kilowatts

It must be remembered that such rates apply only for time durations of
fractions of micro-seconds. The instantaneous dissipation rate is not
available for the compressible liquid, since it would require a numer-
ical integration of liquid velocity throﬁghout the liquid.

In conclusion then, the magnitude of the maximum pressure in

the bubble when it contains gas cannot be simply obtained by an energy
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balance since the compressibility effects in the liquid and the initial
gas pressure strongly effect relative distribution of the available
energy in the bubble gas and in the liquid. If the proportion of avail-
able energy which went into compressing the gas were approximately &
constant as was the case for the incompressible solution over the range
teken, then for a given initial gas pressure within the bubble the
meximum internal pressure and minimum bubble radius could be easily calcu-
lated. Assuming a l/r peaek pressure attenuation, the pressures at
various distances from various size bubbles could be determined.

No mention has yet been made here of the detalled shape of
the shock front which forms in the liquid. Benjamin(85) states that a
shock will form when the peesk pressure is above about 2000 atm. Hick-
ling and Plesset(66) set & lower limit of about 1000 atm for the wave
to steepen into a shock. To calculate the shepe of the shock front
requires a detailed analysis which includes energy dissipation in the
liguid. Such a procedure is beyond the immediate scope of this work.
However, since the time rate of loading by the shock on a solid boundary
can be significant in determining the material behavior, such a detailed
analysis might seem appropriate. For the present, it can be said that
the magnitude of the pressures near a rebounding bubble is sufficient
to cause material damege (Figure 12), but that the pressures during
collapse, assuming that the bubble collapse center is stationary, appar-
antly are not. Of course, potential flow analyses(Bs) show that & col-

lapsing bubble will actually migrate toward an adjacent solid, so that
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during the collapse, surfaces could be closer to the collapse center
than the initial bubble radius and hence deameging pressures could im-
pinge on such surfaces. A useful extension of the present work would
be an exsmination of the possibility of a sufficiently rapid center

motion to occur.



IV. EXPERIMENTAL EQUIPMENT AND RESULTS

A, Water Damage Facility

The investigations of cavitation in the Nuclear Engineering
Department of the University of Michigen have been described by Hammitt.(85)
One of the facilities for investigating the damage mechanisms of cavi-
tating water flow in a venturi was also used for this work. A centrifu-
gal pump with a varigble speed drive provides water flow to a high pressure
tank. There sre four outlets from this tank to four experimental loops,
s0 that from one to four loops may be operated at once. The loops return
to a low pressure tank, and then to the pump inlet, thereby completing
the flow path. A surge tank is connected to the low pressure tank, and
the gas pressure over the water in the surge tenk determines the loop
reference pressure. A schemetic of the loop is shown in Figure 13 with
the cylindrical damege test venturis in plece. For the observations of
bubbles reported herein, three of the loops were blanked-off at the high
and low pressure tanks, and the fourth loop assembled with a two-dimen-
sional plexiglas venturi.

There are three possible flow variables for a constant condi-
tion of incipient (first visible) cavitation in the venturi. The flow=
rate is determined by pump speed, since there are no valves in the main
loop flow, and monitored by an orifice and differential manometer in the
return leg of the loop. Once the flow-rate is set, the pressure cn the
surge tank is set for the desired extent of cavitation in the venturi,

which was always the minimum condition necessary for good photographs.

-9&-
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The second veriable is air content of the water. Deaeration is accom-
plished by spraying a bypass flow from the main loop into a tank held
under vacuum. The third varisble is temperature. For a given flow-rate,
the minimum temperature is determined by the flow of tap water in the
cooling coils within the low pressure tank. The meximum attainable tem-
perature is determined by the pump-work input and therefore by pump speed,

assuming minimum cooling of the loop.

B. Two-Dimensional Plexiglas Venturi

The design of the experimental venturi was dictated by several
requirements. First, it was necessary to provide a cavitating flow in a
known pressure enviromment. Second, it was necessary to have a trans-
parent venturi in order to photograph the flow. The cross-sectional flow
ares of the venturi is rectangular at every axial position, with the long
edge of the rectangle constant at three inches. The nozzle teapers at a
six degree included angle to a constant area throat sbout three inches
long, and is followed by the diffuser portion having the same teper as
the nozzle. The venturi flow asrea is then symmetrical about the throat,
except that the diffuser portion is longer. Adjustments are provided so
that the throat opening can be varied from 1/8" x 3" to 7/8" x 3". After
initial runs and photography, pressure taps were put into one of the two
tapered plexiglas pieces as shown in Figure 1k,

The assembly and appearance of the venturi are shown in Figures
15 to 19. Figure 16 shows the two tapered sections and one of the flat
Plexiglas plates removed to show the flow area. The four plexiglas pieces

are pinned together and inserted into the cast &luminum end pieces. A




igure 14. One of the Two Tapered Plexiglas Sections of the Venturi
ter Pressure Taps had been Installed in it.
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Figure 16. Assembly of Venturi Showing End Pieces.

Figure 17. Assembly of Venturi Showing Axial Bars
Partially Inserted and Showing Spacer
Discs for Both Ends.
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Figure 18. Venturi Assembled Showing Bars and
Clamps on Plexiglas Faces.

Figure 19. Assembled Venturi in Loop.
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smooth entrance to the rectangular venturi from the round four inch pipe
of the loop is provided by =a cast aluminum piece, and the variation in
throat size is accomodated by a series of aluminum discs with tapered
rectangular openings as shown in Figure 16. One disc is removed, and
another placed at the other end of the plexiglas to maintain constant
overall length, for each 1/8 inch increase in throat size. The large
aluminum end pieces are held axially by eight round threaded bars shown
partially insertedvin Figure 17. ?wo square steel bars run axially on
each of the four sides of the plexiglas and are held by a series of clamps
as shown in Figure 18. The entire assembly is connected into the loop
with stendard pipe couplings as shown iﬁ Figure 19. The entire water
facility with three damage test venturié in place and connected, and
with the two-dimensional venturi in place but not connected is shown in

Figure 20.

C. High Speed Photography and Pressure Profiles

High speed motion pictures were teken of the cavitating flow
in the venturi to observe the growth and collapse of individual cavita-
tion bubbles. A Fastax camera was used at gbout 7700 frames per second.
The camera was synchronized with a high-speed short-duration strobe-light
which provided exposure times of about one microsecond per frame. The
venturi was arranged so that the constant three inch dimension was verti-
cal as shown schematically in Figure 21. Light was from behind and passed
through a diffuser. At the time of some of the high speed photographs,

there were no pressure taps in the venturi.
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Figure 20. Water Cavitation Facility with Three Damage Venturis
and the Two Dimensional Venturi.
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Figure 21. Schematic Arrangement of Venturi, Camera, and Strobe Light,
and Field of View Photographed.
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An arrow was scratched very lightly on the inner front surface
of the venturi throat to use as a scale dimension in the analysis of the
photographs. The point of the arrow is at the throat exist and it points
in the direction of flow as shown in Figure 21. The actual field of view
for that film which was examined in greatest detail was 0.61 inches high
by 1.32 inches long, making the film image about one third true size.

Pressure taps were placed at twelve locations on one of the
tapered plexiglas pieces of the venturi as shown in Figure 22. Pressure
profiles were taken at twelve flow conditions. Simultaneously with the
pressure profiles, still pictures were taken of the flow. A 4" x 5"
press camera with the bellows fully extended was used, giving about a
one to one image on high speed Polaroid sheet film. The light source,
from above the venturi, was a single flash from a small commercial strobe
light with a duration of three microseconds. The slow decay in the in-
tensity of the light output from this strobe is evident in the streaks
of light from the bubble highlights trailing downstream as the bubble
moves,

In all the photography and pressure profiles it was difficult
to obtain a perfectly steady cavitation field. The intermittant appear-
ance and disappearance of the cavitation was caused in part by surges
in the pump speed resulting from difficulties with the variable speed
drive, and in part by the phenomenon itself. The still photographs re-
present the appearance at only one instant of time as an appropriate
average. A much more steady cavitation field occurs with extensive cavi-
tation, but it is then impossible to photograph individual bubbles col-

lapsing.
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2-D Venturi Pressure Taps
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Figure 22, Iocations of Pressure Taps in Venturi.
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High speed photographs were taken at two throat openings, 1/8
inch and 1/4 inch, at the minimum velocity for which cavitation occurred.¥
Two sequences of fremes with the 1/8 inch throast are shown in Figures 23
and 24. It is seen that the circuler Imsges are definitely not spherical
since the dismeter of the circle is greater than the dimension of the
throat opening. ‘The comet-like tail on the circular voids is typical of
the appearance of spherical bubbles when they touch the venturi wall.

The peculiar weve-like appearsnce of the steady void in Figure 23 is of
interest but is unexplained. The sequence in Figure 24 shows individual
bubbles distorting esnd combining with the stationary mass of void, but
the individual bubbles sppear to remein distinct as separate cells in
the mass. This particular combination of transverse bubble velocity and
bubble growth rate evidenced in this film is such that the bubbles grow
too large to remain spherical with the 1/8 inch throat. At a higher
throat velocity the bubbles would have less time to grow in the low pres-
sure throat region. Photographs of sbout 200 ft/sec showed much too
extensive a cavitation field to observe individual bubbles. Attempts

to lessen the cavitation by either increasing the loop pressure or by
decreasing the flow rate resulted in a complete dissappearance of cavi-
tation, i.e., a fine enough adjustment of the operating point did not

prove possible.

*The pipe-gasketing system used is not suitable for vacuum operation,
so that minimum cavitating velocity is fixed by the requirement of
maintaining positive gage pressures throughout the loop.




Figure 23,
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7

[ 4

Frame, Scale Length 0.25 in.

High Speed Photographs, 1/8 inch Venturi Throat, Velocity
L f£t/sec, Air Content 1.64 vol. %, 177 Microseconds per
(Reel A)
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Figure 23. (Continued)
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Figure 24, High Speed Photographs, 1/8 inch Venturi Throat, Velocity
75.4 ft/sec, Air Content 1.6L4 vol. %, 137 Microseconds per
Frame, Scale Length 0.25 in. (Reel A)
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Figure 24. (Continued)



Figure 2k,
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(Continued)
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Figure 24. (Continued)



.

Figure 24. (Continued)
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Figure 24,

(Continued)
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The venturi throat opening was then increased from 1/8 inch to
1/4 inch and high speed photographs were taken at & velocity of Th.6 ft/sec.
The resu.ts are shown in three sequences in Figures 25 to 27. There are
many perfectly spherical and separate bubbles visible,* all of which flat-
ten in the direction of flow as they collapse. The non-symmetric collapse
is caused by the sudden pressure rise in the venturi diffuser. Collapsing
bubbles in Figure 27 appear to have a shape similar to that of bubbles
rising in a gravitational field, the sudden deceleration being equivalent
to a field acting in the downstream direction causing bubbles to tend to
move upstream. Figure 25 shows an apparent rebounding bubble. Figure
26 shows the typical behavior of two bubbles, one of which is close be-
hind the other. In all such cases observed they join together before
collapsing. Bubbles which are close together in the direction transverse
to the flow always move parallel to each other, and collapse separately
and never appear to influence each other. A good evemnle of o non-
symmetric collapse is shown in Figure 27. The spherical bubble flattens
on the downstream side, and the flat side then sppears to move into the
bubble creating a torus shaped void. These pictures are believed unique
in showing the collapsing behavior of cavitation bubbles in a high pres-
sure gradient. A total of 597 bubble images were snalyzed from this
film. All the bubbles on the film which were perfectly spherical, did
not strike the wall, and were greater than about 15 mils diameter maximum

size were included.

* It is obvious from these observations that the bubble size spectrum
does not scale directly with throat opening, if the throat length is
maintained constant. No information is available in this regard if
throat length is scaled with opening.
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1547

Figure 25. High Speed Photographs, 1/4 inch Venturi Throat, Velocity
74.6 ft/sec, Air Content 2.35 vol. %, 157 Microseconds per
Frame, Scale Length 0.25 in. (Reel D)
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Figure 25. ({Continued)
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Figure 26. High Speed Photographs, 1/4 inch Venturi Throat, Velocity
74.6 ft/sec, Air Content 2.35 vol. %, 150 Microseconds per
Frame, Scale Length 0.25 in. (Reel D)




=119~

(Continued)

Figure 26.
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1549

Figure 27, High Speed Photographs, l/lL inch Venturi Throat, Velocity
74.6 ft/sec, Air Content 2.35 vol. %, 132 Microseconds per
Frame, Scale Length 0.25 in. (Reel D)
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Figure 27.

(Continued)




-122-

i
igure 27. (Continued)
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Figure 27. (Continued)
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Figure 27. (Continued)
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(Continu
Figure 27.
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The first step in analyzing the motion pictures was to deter-
mine the framing rate. Timing marks on the edge of the film occur every
1/120 seconds, and the film manufacturer places footage marks also along
the edge of the film., A one hundred foot roll of film accelerates through
the camera so that the framing rate changes continuously. Therefore, a
curve of microseconds per frame vs film footage was plotted (Figure 28)
and the location on the film of each bubble is noted by the footage num-
ber.

The film was analyzed in a standard microfilm viewer, giving
an image magnification as determined by the scale arrow marked on the
inner venturi surface of about 6.6 x real size. Four pieces of infor-
mation were obtained for each spherical bubble image -- the film foot
number to obtain framiné rate, the axial distance from the venturi throat
exit measured positive downstream and negative upstream, and the bubble
vertical and axial dimensions if it collapsed non-symmetrically, other-
wise just the spherical diameter, Time was then determined with an
arbitrary zero being assumed when the bubble axial position was at the
throat exit. Therefore, time is negative if the bubble is upstream,
and positive if downstream from the exit. Since the bubbles do not
‘appear exactly at the throat exit point in one of the frames, the posi-
tion for zero time was linearly interpolated between the two frames. If
all bubble translational velocities are the same, then all 597 observa-
tions should fall closely on a single curve of time from throat exit vs
distance from throat exit. Figure 29 is such a plot, and included is a
curve of time vs position of a liquid particle based on the measured flow

rate and flow area assuming zero void.
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The actual liquid velocity may be larger than calculated if
the void content is large. For the limited field of view of the photo-
graphs, 360 frames were analyzed and the total void content measured.
Both spherical and nonspherical voids were measured, and the thickness of
the nonspherical voids along the line of sight estimated from still
photographs teken at 90° to the motion pictures. Most of the void volume
consisted of irregular sheped masses which occurred mostly downstreesm of
the throat exit, and remained relatively stationary. Expressed as a per-
cent of the volume in the diffuser only, and within the field of view,
the time-averaged void content was about 0.2 percent. However, &s seen
in Figure 30 where the void content is plotted vs frame number, the void
varies considerably in time. The meximum void observed in any one frame
was 4.1 percent., Of the total volume of void observed in 360 frames,
28 percent was individusl bubbles which grew spherically and 72 percent
was irregular masses.

Since the time averesge void content is very low, the actual
liquid velocity is very nearly equal to the calculated velocity based
on zero void content. From Figure 29, the bubble translational velocity
in the throat and for about 0.2 inch into the diffuser is 87 ft/sec. The
liquid velocity in the throat is T4.6 f‘t/sec° Therefore, the bubble slip
ratio of bubble velocity to liquid velocity is 1.17 in the throat, and
decreases to 1,0 in the diffuser. This is as expected since in an ac-
celerating flow in a falling pressure gradient the bubbles are accelera-

ted faster than the liquid because of their lower density.
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The normalized bubble radius R/R .. from the high speed photo-
graphs was calculated as a function of time based on the first observed
maximum on the film. Since some bubbles had the same maximum size in two
frames the first frame was taken as the zero time reference. An equi-
valent bubble radius was defined for that portion of the collapse where
the bubbles bec:me non-spherical. The volume was assumed to be equivalent

to an ellipsoid,

N |t
njQ

L A
Volume = 3 b >

where A , B, and C are the axes. For the observed bubbles, it was as-
sumed that the vertical ellipsoid axis was the same length as the axis in
the line of sight, or in other words the bubbles were axially symmetric.
The third axis was taken as the maximum dimension of the bubbles in the
direction of flow. If A is the vertical measured length and B the
axial length, then a sphere having the same volume as that calculated for

an ellipsoid from the above formula would have a radius of

R=z (428)Y/3

The equivalent spherical radius and the normalized radius was calculated
for each of the 73 bubbles analyzed. The average maximum radius, RO s
was 36.5 x ].O'3 inch, and the maximum and minimum values of Ro for bubbles
which were tabulated were 68.3 x 1073 and 19.6 x 1073 inch respectively.
Figure 31 is a plot of the normalized bubble radius vs distance

from the venturi throat exit. The curve drawn on this figure was used

along with the axial pressure profile to obtain the venturi pressure vs
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observed bubble radius. 'Since all bubbles are normalized to their indi-
vidual meximum sizes, each of the 73 bubbles is represented by & point
at & normelized raedius of 1.0. It is seen that the average venturi lo-
cation of the meximum size of the bubbles is about 0.15 inch downstream
from the throat exit. There is & quite extensive spread of the points
along the horizontal exis, indicating either that the pressure profile
in the venturil does not strongly govern the actual growth and collapse
region, or that, as is known to be the case, there is considerable
oscillation in the cavitation field and in the stetic pressures.

It was thought that a plot of normalized radius vs time measured
from the maximum bubble size for each bubble might help to eliminate the
scatter of Figure 31 if it were true that the static pressure gradient
did not completely govern the collepse region. Figure 32 is a plot of
the normalized bubble radii vs time from the first observed bubble maxi-
mum size. It is seen that there is still considereble spread in the data.
However, the bubble collapse can be definitely seen to slow down at nor-
melized redii of 0.5 to 0.6. This may indicate that inertia of the liquid
is not the only factor involved in the collepse, and perhaps that based
on numerical results, one can say that there is a considerably faster
internal pressure rise than that predicted for & small smount of gas
under adisbatic or isothermal compression. An alternative explanation
is that departure from ideal spherical symmetry results in a slower col-
lapse. Note that the growth curves are considerably steeper in the low

R/RO range than the collapse curves.
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A plot of the date with & time normalization similar to that
used in the theoretical analysis requires the pressure differential be-
tween the liquid far from the bubble and the internal pressure. The
internal pressure can be assumed equal to saturated vapor pressure at
the liquid temperature as a first try, and the external pressure for
each bubble location is obtained from the measured pressure profile.
Therefore, the experimental profiles will be considered next.

Figure 22 shows the locations of the twelve pressure taps in
the venturi. The first set of pressure profiles was obtained for six
flow conditions in the venturi. The minimum velocity was determined by
the minimum surge tank pressure which, as previously indicated, must be
a positive gauge pressure. The flow rate was then adjusted until Jjust
sufficient cavitation was visible to obtain pictures of individual bub-
bles. The nominal venturi throat velocity was about 80 ft/sec. The
maximum velocity was determined by the meximum range of the calibrated
orifice used for measuring flow rate (about 280 gellons per min). The
gas pressure in the surge tank was adjusted for the same appearance of
cavitation, resulting in a nominal maximum throet velocity of 120 ft/sec.
At each of the velocities, profiles were obtained with air saturated tap
water (at STP) and with about 50 percent of saturation (STP) at temper-
atures between about 70°F and 80°F. Then the loop cooling was turned
off end hot, deaerated profiles were obtained at 113°F for the lower
velocity and 135°F for the higher velocity. A normalized suppression

Pressure was calculated, defined as pressure above vapor pressure divided
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by the liquid kinetic pressure in the venturi throat, i.e., "cavitation
number”. The results are shown in Figures 33 and 34%. 1In all the curves
except those for the high temperature, the upper row of pressure taps
gives a higher pressure than the lower row, in the vicinity of the ven-
turi throat. It was thought that this might have resulted from a slight
difference in the 1/4% inch throat opening across the three inch width of
the flow area. For example, a change in the throat size from 0.250 x 3.0"
to 0,240" x 3.0" causes an 8.6 percent increase in the kinetic pressure
at the same flow rate. Unfortunately, no zero cavitation, i.e., single-
phase flow, pressure profiles were included in the first runs so it could
not be determined whether the cavitation cloud caused the non-symmsiric
behavior or whether other effects as the possible slight differences in
flow area dimensions due perhaps to the clemping arrangement on the plex-
iglas venturi, etc., caused them.

Another set of pressure profiles were obtained after the ven-
turi had been dissassembled and then reassembled with & slightly differ-
ent clamping arrasngement. The seme flow conditions were used, with some
edditions at each flow rate and temperature. The normelized pressure
profiles are shown in Figures 35 to 37. Each curve represents average
values of the normslized pressures of from two to five runs. Two addi-=
tional cavitation conditions were used: zero cavitation, plotted with
an arbitrarily selected minimum normslized pressure, and visible initi=-
ation, corresponding to the first visible trail of tiny bubbles from the

two taps closest to the throat exit. In each of these profiles, all
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points fall on the same smooth curve, SO it is quite probable that the
method of clamping the venturi cen be important in maintaining uniform
flow and pressure across the venturi width. In all further analyses,
the second set of curves is used.

There was no significant veriation in the appearance of the
cavitation between the first and second set of curves. Still pictures,
which were teken et the same time that the first set in Figures 33 and 3l
were obtained, are shown in Figures 38 to 45, The arrow which was scratched
on the inside flow surface is clearly visible in most of the photos. It
is 0.205 inch long, énd the tip of the arrow 1s at the throat exit and
points in the direction of flow. For most flow conditions; the scratched
arrow does not seem to act as & nucleating center for cavitation. Both
those instances, shown in Figures 40 and 44, where the scratch does ini-
tiste & cavitetion cloud are for high temperature water.

The high speed photography was cbtained with a cavitation con-
dition similar to the photograph in Figure 38 end to the normalized pres-
sure curve in Figure 35 marked "Cavitation to O0.75". It is seen in
Figure 35 that there is a significent difference in the pressures near
the throat exit for different cavitation conditions. The normalized
pressures for slightly different flow velocities is of course the best
means of plotting the date, but it is necessary to have the actual pres-
sure in the venturi to normalize the data on bubble radius obtained from
the high speed photographs. The actual flow rates and absolute pressures

for the curves in Figure 35 were well controlled, so that the average
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Figure 38. Still Photograph, 3usec Exposure, 81.k ft/sec,

2.05% Air Content by Volume, 68.8°F. Arrow
is 0.205" Long and Tip is at Throat Exit.

Figure 39. Still Photograph, 3usec Exposure,
0.93% Air Content by Volume, 70.5
is 0.205" Long and Tip is at Thro

—
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Figure 4O. Still Photograph, 3usec Exposure, 83.3 ft/sec,
0.699% Air Content by Volume, 112°F. Arrow
is 0.205" Long and Tip is at Throat Exit.

Figure 41. Still Pnotograph, 1.2usec Exposure, 80.5 ft/sec,
Iow Air Content, ~70°F. Venturi is Rotated so
the Pressure Taps are on the Top Half, and Flow
is Left to Right.
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Figure 42. Still Photograph, 3usec Exposure, 123 ft/sec,
2.51% Air Content by Volume, 78.L4°F. Arrow
is 0.205" ILong and Tip is at Throat Exit.

Figure 43, Still Photograph, 3usec Exposure, 120 ft/sec,
0.9 r Content by Volume, 77.0°F. Arrow




Figure 4l. Still Photograph, 3usec Exposure, 116. ft/sec,
0.82% Air Content by Volume, 136°F. Arrow
is 0.205" Long and Tip is at Throat Exit.

Figure 45. Still Photograph, 1.2usec Exposure, 115. ft/sec,
Iow Air Content, ~78°F. Venturi is Rotated so
the Pressure Taps are on the Top Half, and Flow
is Left to Right.
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values of the pressures above vapor pressure, (p - pv), for several
different runs were appropriate values to use for comparison to the bub-
ble photographs. Figure 46 is a plot of the average unnormalized pres-
sures for visible initiation and for cavitation to 0.75 inch. These
curves are at the same flow rate, the only difference in the loop set-
tings being an increase in the surge tank pressure by an average of 2.7
psi. At 0.5 inch from the throat exit the pressure rises by 9.0 psi.
Therefore, & rery slight change in cavitation condition, even consider-
ably less than that of the two curves in Figure 46, can have a very
significant effect on the pressures near the throat exit. It is in
this reglon where the photographs were taken. The field of view extended
(from the throat exit) 0.926 inch downstream and 0.39% inch upstream.
The location of the bubbles within this field can be accurately measured,
as shovn by the very smooth curve with small scatter in Figure 39. How-
ever, & small oscillation in the cavitation field, which is common, means
a slight shift of the location of the sharp pressure rise and s large
change in the local pressure.

The pressure differentiasl, (p - Pv)’ is used in a normalized

time, t', according to

In the incompressible numerical solution for collapse, a similar normal-

lzation was used except that the initial value of the quantity (p - pv)
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was used instead of the instantaneous value which will be used here.

For a given bubble, the local pressure at the known venturi location is
obtained from Figure 46, and the time is measured from the film freame
with the first maximum bubble size. The normelized time was thus obtained
for ten bubbles, arbitrarily selected from the 73 observed, for the curve
"Cavitation to 0.75", and plotted with normalized radius in Figure 47.

A comparison *to Figure 32 indicatec somewhat less scatter wher the no.-

malized time is used.

D. Comparison of Theoretical and Experimental Collapse Curves

It is desired to obtein a plot of normalized bubble radius vs
time for the average observed bubble in order to be able to make a com-
parison with a calculated curve. The calculated curve, however, should
be obtained from the same variation of external liquid pressure as a
function of bubble radius. Accordingly, a best curve was drawn through
the points of Figure 31 for normalized bubble radius vs distance from
throat exit. At a given bubble redius, the distance from the throat
exit was obtained and used to get the pressure from the pressure profile
in Figure 35 for cavitation to 0.75 inch for high air content. A plot
of normalized bubble radius vs bubble environmental pressure was obtained
as shown in Figure 48. A curve was approximately fitted to the experi-

mental curve resulting in the following equation

P“R = 0.04 +o,og_
R'-0.25
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where (p - Pv) is measured in atmospheres; R' > 0.3. This equation

was used as an external function in the incompressible solution to give
the pressure, above a constant vepor pressure in the bubble, in the
liquid far from the bubble during collapse. The initial pressure is
0.0733 atm. The internal gas pressure was assumed to be 0.010 atm
initially and assumed proportional to (l/R‘5)1'5° Other parameters
were those of water, and the maximum redius was the average maximum ob-
served, i.e., 36.5 x lO'5 in. The collapse curve obtained 1s shown in
Figure 32. The curve compares with the experimentel points to a normal-
ized bubble radius of 0.5. Thereafter, the calculated collapse stops
abruptly at R' = 0.164 because of the rise of internal gas pressure,
whereas the experimental points indicate a graduel slowing down of the
bubble wall velocity. The maximum calculeted wall velocity was 48.2 ft/sec,
near the final radius. The maximum experimental wall velocity was be-
tween 12 and 20 ft/sec, and occurred nearer the beginning of collapse.
The assumption of an adiabatic gas compression inside the bubble is of
course not justified in this case. A low initial internal pressure is
necessary, but a more rapid pressure rise with decreasing bubble radius
is needed. Perhaps the observed behavior is indicative of a substantial

departure from thermal equilibrium in that the vapor within the bubble

begins to behave as a perfect gas at that portion of the curve where the

departure from the analytical prediction is observed. If so, this condi-

tion is reached earlier than predicted by previous investigations.(QB)
The appearance of the cqllapse curve is similar to the theore-

. 4
tical collapse curves of Florschuetz and Chaoa( 5) Their curves follow
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the pure inertia-controlled collapse curves, then the collapse slows down,
or even rebounds depending on the thermal effects. Several rebounding
bubbles are included in Figures 31 and 32, and also the general behavior
of the time-normalized curve in Figure 47 is the seme shape as the theo-
retical curves for & combined influence of inertia and heat transfer as
considered by Florschuetz and Chao. They define several normalized para-
meters which they use to determine whether inertia or heat transfer or
a combination of both effects is the predominant collapse mechenism.
The parameters used were:
e (Taas - Tirp)

P, L

Ja = Jakob number =

c - Rf(ﬁ:’; 'R)
P Xx°

The usual thermodynamic parameter appearing in cavitation literature(92)

is defined as

A

Bcw = E__C_P T = PC'P/AT\P
C LAAH

which has dimensions of l/ft because of the term AH, representing

liquid hea . This is obviously closely related to the Jakob number.
Several corrections were applied to the parsmeters by Flor-

schuetz and Chao(u5) to teke account of the non-linear variation in vapor

bressure with temperature and to define a suiteble average vapor density.
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Using only the quantities sbove, the parsmeter Bgg, = Jag/ JE was
defined, and corrections to this value of B resulted in a quantity,
Berf » such that Berr is slways larger than Bggy. For values of

Bepe > 10., they concluded that liquid inertia control is assured. The
value of Bsat for the venturi in the present investigation was calcule-
ted using the average pressure from Figure 46 at the location where the
bubble collapsed most rapidly as determined from Figure 31 ~=- namely 0.25
to 0.35 inch downstream of the throat exit. The value of Bsat thus
calculated was 28.9, and if appropriate corrections are made to obtain
Beff it would be even larger. Therefore, using the criteria of Flor-
schuetz and Chao,(h5) the bubble collapse in the venturi should be com-
pletely controlled by liquid inertia, whereas the curve appears similar
to those theoretical curves presented for the case which includes heat
transfer effects.

The presence of gas in the bubbles is not accounted for by the
above analysis, and Florschuetz and Chao enalytically estimate the effects
of gas for only the case of purely heat trensfer controlled collapse.

It is possible, then, that thelr analysis is appropriate if there were
no gas present. In the detailed photographic analysis herein; the water
was about saturated with air at one atmosphere, so there could well have

been significant quantities of air inside the bubbles although there is

no direct measurement possible. However, similar films with water con=-
taining the minimum attainable level of air for the equipment used, namely

0.77 percent by volume at loop temperature and 1 atm (i.e., 39 percent
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of saturation at 1 atm or 9.3 ppm by weight) also indicated identical
bubble behavior in regard to shape of bubbles and rebounding bubbles.
The fact that the reduction of dissolved gas by more than 1/2 did not
prevent the occurrance of bubble rebound* suggests that there may not

- be & significant amour+ of gas diffusion into the bubbles during bubble
growth, even for saturated liquid. Treaster,(5h) in an investigation of
cavitation hysteresis, presented an analysis by Parkin and Kermeen(93)
to calculate the bubble growth times due to gas diffusion. The analysis
includes the effect of a relative velocity between bubble and liquid
which would tend to increase the growth rate by diffusion because the gas
concentration gradient near the bubble surface is constantly maintained
large. The relastive bubble-liquid velocity in the venturi throat and
slightly downstiream was 12.4 ft/sec as obtained from Figure 2§. Both
the largest and smallest values of the observed bubbles when at their
maximum sizes were used, and the pressure surrounding the bubble was taken
as the average at the first four pressure taps in the venturi for the
same conditions as in the high speed film. The largest bubble actually
grew from 18.9 to 68.3 mils in 660 usec and the analytically predicted
growth time based on diffusion was 4.2 psec. The smallest bubble grew
from 5.3 to 19.6 mils in 405 usec and the analytic growth time was 0.65
psec. Thus the observed growth times were from 150 to over 600 times

(54)

longer than the theoretical. Treaster also presented another analysis

*It has been suggested in the past that rebound would only occur in
liquids with high gas content. This is not borne out by the present
observations over a relatively narrow range of gas content.
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ignoring both velocity tramsport and liquid inertis, and the growth times
were considerably longer. One may conclude that the diffusion of gas into
the bubble during growth is probably significant, but the actual quantity
of gas is difficult to determine because of the flow situation. It must
be noted that the mininum measured pressure in the venturi was always
above the ligquid vapor pressure by the order of one psi or more, and yet
cavitation occurred. The analysis just mentioned, by Treaster, indi-
cated bubbles would grow by gas diffusion in such circumstances. Also;
cavitation at the pressure taps, and local liquid turbulence mean that

the measured value of pressure at the venturi wall may be well above the

minimum local and instantaneous liquid pressure.




V. CONCLUSIONS

A, Viscositx

The predominant effect of shear viscosity is to increase the
liquid pressure at the bubble wall during collapse, The magnitude of
the pressure rise and the rapid change in density with respect to time
suggests that the usual Navier-Stokes equation may not be completely
satisfactory. That is, Stokes' assumption that stress is independent
of the time rate of change of density may not be appropriate,

Moderate increases in viscosity from a reference value for
water do not appreciably slow the bubble collapse, The bubble wall
velocity in the incompressible analysis decreases as viscosity is
increased, In the compressible analysis, moderate viscosity increases

cause higher bubble wall velocities for smell bubble radii, probably

because of terms neglected ih the compressible analysis for the pressure

at the bubble wall. However, in both compressible and incompressible
analysis, the large limiting viscosity defined by Pbritsky(lg) does
cause the bubble collapse to abruptly slow down, and the complete
collapse time to become large, although it can not be verified con-
clusively numerically whether or not the time is actually infinitely
large as stated by Poritsky.

Calculation of the instantaneous viscous energy dissipation
rate for a typical bubble collapsing in an incompressible liquid gives
a rate of the order of 40 horsepower, indicating that local effects

such as heating can become significant.
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Very high time rates of density change in the liquid near a
collapsing bubble, and high viscous shear stresses occur. A brief
review of some of the relaxational phenomenon in liquids indicates that
relaxation effects may exist for such collepsing bubbles. The possi-
bility that such effects are in part fesponsible for the phenomenon of
sonoluminescence is proposed.

Inclusion of the liquid viscosity and surface tension intro-
duces two scaling parameters into the equations of motion. The Rayleigh
type normalization and solution of the bubble dynamics equations is
therefore not generally appropriate, since a solutién is necessary for

each set of these two parameters.

B, Surface Tension

The effect of surface tension is most important at small
initial bubble radii. Usually the effect is small when the bubble has
started collapsing because other effects such as liquid inertia and
pressure at the wall (induced by viscosity) predominate even as very

small radii are attained.

C., Compressibility

The proportion of the energy available for collapse which
goes into compression of the liquid appears to be considerably more
than the viscous dissipation. Consequently, the collapse rate for a
compressible liquid is considerably less than that for an incompressi-

ble liquid since less available energy appears as kinetic energy.
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D, Damage Mechanisms

There is no shock formation* observed during the bubble collapse.
The pressure in the liquid at a distance equal to the initial bubble
radius does not apparently change enough to cause the observed damage
nor even change extremely rapidly during collapse. However, the rebound
of the bubble which contains a compressed gas forms a shock which,
according to Hickling and Plesset,(66) can cause damage to solids at
distances equal to thé initial bubble radius. This suggests that bubble
migration during collapse may be required to place the bubble center
close to a surface so that either the pressures generated during collapse
can be damaging or the rebound shock, which originates from the final
collapse region of compressed liquid and/or gas, will not be too greatly
attenuated. The maximum final bubble pressure, and therefore maximum
outward moving pressure amplitude, depends on the initial amount of gas
and/or vapor in the bubble. Iess gas permits the bubble to collapse

farther and the resultant pressure to be higher,

E. Experimental

Photographic observation of bubbles in water in a cavitating
venturi gave collapse rates comparable to those analytically predicted,
down to about one-half of the initial bubble radius. Thereafter the
experimental bubbles slowed down and some rebounded. Reduction of the
dissolved gas from about saturation to about 30 percent of saturation
did not eliminate the rebounding of the bubbles observed experimentally.

The rebounded bubbles appear to have roughened surfaces so that it is

*i.e., a condition where later pressure characteristics overtake those
starting earlier.
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difficult to know whether or not single bubbles or a multiplicity of
smaller bubbles is actually observed. The pressure rise in the venturi
diffuser was of the order of one atmosﬁhere, and the rate of rise was
of the order of 10,000 lbf/in2 sec. The fact that the bubble collapse
initially followed the analytic collapse governed by inertia, and then
slowed down or rebounded indicated a pressure rise inside the bubble
which is more rapid than an adiabatic or isothermal compression of gas.
Heating and evaporation at the bubble wall(u5) probably is of signi-
ficance in the collapse even though the range of pressures and liquid
properties suggests that inertia should control the collapse. It may
be that deviations from thermal equilibrium causing the vapor within
the bubble to act as a perfect gas is partly responsible for the reduced
collapse rates.

Bubble collapse was asymmetric, The bubbles flattened on the
downstream (high-pressure) side, and the indentation thus formed some-
times appeared to move in the upstream direction as a jet, giving the

bubble a torus like shape.
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APPENDIX I
RUNGE-KUTTA METHOD FOR NUMERICAL SOLUTION OF ORDINARY
DIFFERENTIAL EQUATIONS

Consider first a single first order equation of the form
9
dy = ¢'= T(.9) (A-1)
d x

where x 1is the independent variable and y' the derivative of the

dependent variable y . If Vj is the known value of y at x. and

J )
Ox  is the increment in x , (xj+l - xj) then approximately

_ / (a-2)
Gu =% 7275

A more accurate approximation would involve & higher order expansion
than the simple linear or first order expansion of Equation (A-2).
Galler(87) describes one of the methods known as the Runge-Kutta pro-
cess which is especially adapted to high speed electronic computers,
and which is available as a subroutine at the Computing Center of the
University of Michigan. Equation (A-2) gives a straight line approx-

imation to the curve between (x ) and (x; + Ox v+ k,) where

g 93 J

from Equation (A-2)

£, = A)Cvc(xj')gj) (A-3)

At the fractional distance m along the increment, make another estimate

of the increment in y by using the derivative evaluated at this point

’é, =AX1C<XJ'+MAx)gJ,+m7@o> (A-4)
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Then, yet another estimate of the increment in y is made using ko

and kl

/éz'—‘A)c f(xj‘-fn/_sx) ffj#—(n-r‘) 7€o+r'£,) (A-5)
and also

’& = AX F(Xj +Pax, %.f-[?’-s-ﬂ)é +S)€, +t @a) (A-6)

There are then four estimates of the increment in y , namely kg, kK,
k, , and k3 , based on the known increment Ax and on four calculations
of the derivative y' at four different (x,y) coordinates between

(xj,y ) and (Xj +Ax , y. +4y) . It remains to choose a suitable

J J
average of these four values of the increment in the dependent variable

¥ . A weighted average is calculated such that

Ag :Z;I—yJ.:a7€0+b€,+c}€z+dl@3 (A-7)
where

a+brcrd =1 (A-8)

It is desired to choose the coefficients so that an expansion of f(x,y)
in a Taylor's series is correct to fourth order terms, (Aoc)J+ « There-
fore, expand y 1in a Taylor series about Y5 5 8O that yj+l is given

by

/ ;;)2 " " f n! _
G =3 74%9, +(§/ 7J,+L—§“ #£40) ¢ s --= g

J
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where the derivatives are total derivatives of a function of two vari-

ables, or in other words using Equation (A-1)

%’I = 'F()(J' s yJ>

X = (g + £ (x5, yp) of (x;,u) , ete
J B'X bff

Also, expand each of the k's in Taylor's series using the given

increments in x and y about X3 )

expansions into Equation (A-7) for Ay and equate this to Ay obtained

Y and substitute all of these

from the expansion of Equation (A-8). By comparing coefficients on the
two sides of the resulting equation, eight equations are produced with
ten unknowns, & , b, c,d ,m,n, r,p, s, t. Gill(88) chooses
two of the ten, thereby uniquely specifying the other eight, in order to
best accomodate the solution by means of a digital computer, so that
there will be & minimum amount of temporary storage of quantities during
the analysis. He shows that the method cen be extended to the solution

of a series of n simultaneous differential equations of the form

g = (6 y,,9,, 7 y,)
‘:f;:'e.O() Y Ye )_“59

‘f;th(k)?n?a)"'f/w)




APPENDIX II

NUMERICAL SOLUTION FOR INCOMPRESSIBLE LIQUID

The solutions for the bubble wall velocity and the time elapsed
as functions of the bubble radius are obtained first. Selected values
of the velocity and radius are stored in memory during the machine
procedure. After the wall velocity curve is determined and printed,
these stored values are used to determine the pressure and velocity
field throughout the liquid at the selected bubble radii. This proce-
dure is possible since the liquid is incompressible and therefore the
pressure field is completely determined once the wall velocity (and
acceleration as a function of velocity) is known.

The calculations necessarily involve dimensional guantities be-
cause of the scaling effect of the viscosity and surface tension para-
meters. In order to easily interpret the relative magnitude of the

variables, the input data to the program was in mixed units as follows:

Variable Units for input data
R, - initial radius mils (in. x 1073)
PysP, - Pressure atmospheres
H - viscosity multiples of By o+ where
My = viscosity of water
0 - surface tension multiples of o, , where
o, = surface tension of water
P, - density multiples of density of water
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This method has the advantage that the new value of the dependent
variable at (x + Ax) can be found using only the information available
at x , namely the value of the function and its slope. Thus, if the
initial values of dependent and independent variables are known, the
integration then proceeds from that point without reference back to pre-
ceding values. Therefore, no special computer instructions are necessary
to initiate the procedure if the derivatives can be calculated at the
initial values. In addition, the increment Ax , can be changed to any
arbitrary value prior to calculating the next value of y . This pro-
perty is used to good advantage when the independent variable is the
bubble radius in order to cover a several decade span by successively

reducing the increment in radius at each decade,
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The output format included the input data, and solution for the

normalized variables, as previously defined, in tabular form. The equa-

tions which are solved by the Runge-Kutta method are

dg'._.___!_ ___2_11'2+[P.;(R')-P01(R')]+ 20 + u/}x’
4R’ RU') 2 [Eo(‘?a)-ﬁ(d R’ R’

The initial conditions that U' =0 at R' = 1, cause diffi-
culty in the calculation of the derivative au'/aR' . Therefore, an
approximation is made for values of R! > 0.990. Since the velocity
is very small, the viscous term and the kinetic energy term are both
small and the change in [p!(R') - pé(R')] is assumed negligible, If

they are neglected, the equation is

Ul_d_U_' _ ,,LZG"‘[

S

dR' KR

which can be solved to give

_lizr:.—{/ﬁnl?l‘ é.a.;, -+-C
2 R’

Using the initial conditions, the constant of integration is

Cc = - 20"
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and therefore

U= |-2 R+ 20"'<_F3'_:_{\
R,

(A-9)

Equation (A-9) is used for values of R > 0.990. Then R' is set equal

to 0.999999 and the velocity is calculated from Equation (A-9). This
velocity is used to start the Runge-Kutta procedure, and values of U'
compared well with the approximate solution to a radius of 0.990., The
increment in the independent variable R' is reduced as R' becomes
small so that the current value of R' 1s always at least 100 times
larger than the increment in R' . Only sufficient values of R' are
printed, in order to produce & good curve, SO there are actually many
more steps made in the integration procedure than appear in the output.
Even though the machine has eight digit accuracy, the roundoff in R
for a decrease from 1.0 to 10'6 causes the current values of R' to

differ from exact multiples of the increment in R' . Therefore, a

change in increment is made after each decade change in R' , so that the

printed values of R' are simple numbers and can conveniently be com-
pared from one output to another at the same values of R’

The pressure and velocity field require no integration once the
bubble wall velocity and radius are obtained. The selected values are
obtained from a table in memory and the pressure and velocity are simply

calculated for a given instant of time from the following algebraic

formulas




uf2 :=_L£Li_ | '
rwa

Note that the liquid radius here is given in terms of the current bubble
radius R . This will not be possible later, when the pressure field in
the compressible case is considered because the pressure is calculated
along a characteristic path and time (and therefore bubble radius)
changes as this path is traveled. Therefore, the later liquid radius
normalization is different,

The internal bubble pressure pO(R') and the pressure at infinity
p_(R') are put into the program as external functions, so that they can
be changed without changing any other part of the main program, Several
special variables are specified in the input data for use as parameters
in the external pressure functions so that some variation can be conven-
iently effected by merely changing the input data card.

The solution was programed in the MAD (Michigan Algorithm Decoder)
language and run on the IBM 7090 computer. The following list compares
the notation for the variables as used in the computer program given on

the following pages.
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COMPUTER NOTATION FOR INCOMPRESSIBLE LIQUID

Variable Description Computer Notation
(primed quantities are normalized)

Po(Ry) Initial pressure at infinity PINF (atm)

pO(RO) Initial internal pressure PO (atm)

R, Initial bubble radius RO (mils)

o Liquid density (multiples of water) RHO

R’ Bubble radius R

dR’ Increment in radius DELR

r' Radius in liquid RL

U Bubble wall velocity U(1)

£ Time U(2)

o Surface tension (multiples of water) SIGMA

o' Surface tension (normalized) D

M Viscosity (multiples of water) MU

B! Viscosity (normalized) c

p'(R") Pressure at bubble wall LIQPRS. (R)

p'(r") Pressure in liquid P

p'(R") Varisble pressure at infinity PEXT. (R,PINF,PO,Z1,Z2)

- Constants read in as data to vary
external function Z1,722,Y1,Y2

p'O(R') Variable internal pressure PINT, (R,PO,PINF,Y1,Y2)

au' /aRr! Derivative of velocity pU(1)

dt'/dR'  Derivative of time Du(2)

u' Velocity in liquid v

- Stored bubble wall velocity SU (K)

Stored bubble radius

SR (K)
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COMPUTER LISTING - INCOMPRESSIBLE LIQUID

SCOMPILE MAD,PUNCH OBJECT,PRINT OBJECT,FULL DUMP

MAD (24 SEP 1964 VERSION) PROGRAM LISTING eee eoe cee

START

INITAL

GO
Ltoc(1)

LOC(2)

LOC(3)

READ DATA,PINF,SIGMA, MU, RO,RHO4POyY1l,Y2,21,22
INCRMT=17005.
C=.720#MU/ (RO*{{{PINF-P0)#2116,22%RHO).P..5))
D=59.75#SIGMA/ (RO=(PINF-PO)%2116.22)
PRINT FORMAT TABHD1,MU,SIGMA,PINF,RO,RHO,C,D
PRINT FORMAT TABHD3
EXECUTE SETRKD.(2,U{1),DU(1),Q(1),R,DELR)
TAGL=1
TAGZ2=10
THROUGH INITAL,FOR R=1.4DELR,TAGl.G.1CG
DELR=-1./INCRMT
Ull)=—(-2.#(ELOG. (R)+2.#D#((R-1.)/R))).P..5
WHENEVER TAG2.E.1D
PRINT FORMAT OUT1yRyU(L1) 90es0e s LIQPRS.(R) +PEXT.(RyPINF,PO
1 521,22)
TAGZ=9
END OF CONDITIONAL
TAG1=TAGl+1
TAG2=TAG2+1
CONTINUE
PRINT FORMAT TABHD2
DELR=-1.E-6
=.999999
Uf1)=~{-2.2{ELO0G.{RI+2.%D#((R-1.)/R)))eP..5
Ut2)=DELR/UI1}
J=1
SR{J)=R
SutJr=u(ly
J=J+1
PRINT FORMAT OUTL,RyUL1)4CayUL2),LIQPRS.(R) PEXTLIR,PINF,P0O,7Z
11,22)
TAG2=1
TAG1=2
I=3
DELR=.9999-R
TRANSFER TO LOC(RKDEQ.(3))
DUCL)I==(1.58U(1)%U(1)#R+CoU(1)42.#D+R%(PEXT.(RyPINFoP0s21,22)
1 -PINT.(RyPO,PINFy,Y1,Y2)))/{U(1)#R2R)
DUl2)=1.7U(1)
TRANSFER TO GO
CONTINUE
TRANSFER TO LOCI(I)
WHENEVER TAGl.LE.10Q
DU(1)=—(1.5%#U(1)*U(1)#R+C2U{L1)+2,%D+Re(PEXT.(RyPINF,P0,21,22)
1 -PINT.IRyPO,PINFyY1,Y2)}))}/(U(1)#R=R)
PRINT FORMAT OUTL1,RyU(1),DUCL)*U(1),U(2)4,LIQPRS.(R),PEXT.
1 (RyPINF,P0,21,22)
WHENEVER TAGl.E.1
SR{J)=R
Su(Jl=utll)
J=J+1
END OF CONDITIONAL
TAGI=TAGl1+1




Loc(4)

LOCt(5)
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DELR=—~1.,E-4%
TRANSFER TO GO
END OF CONDITIONAL
[=4
TAGl=1
PRINT FORMAT TABHD2
DU(L)=={1.5#U(1)#U(1)#R+C*U(1)+2.#D+R#(PEXT.(RyPINF,P0U,21,22)
~PINT<{RsPO,PINF,Y1,Y2)) )/ (U{1)#R%R)
PRINT FORMAT OUT1,R,U{1),DU(1)}#U{1),Ul2),LIQPRS.(R),PEXT.
(RyPINF,PD,21,22)
SR{J)=R
Sutdl)=u(l)
J=J+1
TRANSFER TO GO
WHENEVER TAGl.L.1lC
TAGLl=TAG1+1
TRANSFER TO GO
OR WHENEVER TAGL.E.1Q0.,AND.TAGZ2.L.9
DU(L1)=—(1.5#U(1)#U(1)%R+C#U(1)+2.#D+R+(PEXT.(R,PINF,P0,Z1,22)
~PINT.(RsPOsPINF,Y1,¥2)))/(U(]1)*R2R)
PRINT FORMAT OUT1,R,U(1),DU(L)#yl(l),U(2),LIQPRS.(R)},PEXT.
(RyPINF,P0s21,22)
TAGLl=1
TAG2=TAG2+1
TRANSFER TO GO
END OF CONDITIONAL
1=5
PRINT FORMAT TABHD2
DULL)=—(1.5#U(1)#U{1)#R+CoU(L1)+2.#D+R#(PEXT.(RyPINF4P(,y21,22)
—PINT.{RyPOSPINF,YLlyY2)))/(U(L1)%R%R)
PRINT FORMAT OUTLsR,U(1),DU(L)=U(1),U(2),LIQPRS, (R} yPEXT.(R,P
INFsP0,y21422)
SR{J)=R
SUtJ)I=U(l)
J=J+1
TAGLl=1
TAG2=1
TRANSFER TO GO
WHENEVER DU(1).L.0.sTRANSFER TO SLO(1)
WHENEVER TAGl.L.100
TAGL=TAG1 +1
WHENEVER DELR+R.L.«90,DELR=.90=R
TRANSFER TO GO
OR WHENEVER TAGl.E«lCO.AND.TAG2.L.9
DU(1)=-(1.5*U(1)*U(1)*R+C!U(1)*2.*D+R'(PEXT.(R.PINF.PO,ZI,ZZ)
~PINT.(RyPOPINF,YLlyY2)))/(U(1)2R*R)
PRINT FORMAT OUT1,R,U{1),DU(L)*U(1),U(2),LIQPRS.(R)4PEXT.
(RyPINF4P0,21,22)
TAGl=1
TAG2=TAG2+1
WHENEVER DELR+R.L..9C,DELR=.90-R
TRANSFER TO GO
END OF CONDITIONAL
PRINT FORMAT TABHDZ2
DU(1)=-(1.5*U(1)*U(1)GR+C'U(1)+2.'D+Rl(PEXT.(R.P[NF’POyZIyZ2)
~PINT.(RsPO,PINF,YLsY2)))/(U{1)=R#R)
PRINT FORMAT OUleRyU(l),DU(l)'U(l),U(Z)pLIQPRS.(R),PEXT.(R,P
INF,P0y21+22)
SR{J)=R
Su{J)=ull;




LOC(s)

LAC(7)
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J=J+1
I=6
TAGL=1
TAG2=1
TAG3=10C"
DELR=-1.E-4
TRANSFER TO GO
WHENEVER DU(L1).L.Cey TRANSFER TO SLO(1)
WHENEVER TAGl.L.TAG3
TAG1=TAGLl+]
WHENEVER R4DELR.L+.1CyDELR=.13-R
TRANSFER 70 GO
OR WHENEVER TAGl.E.TAG3.AND.TAG2.L.8
DU(1)=={1.5#U(1)*#U{1)*R+CeU(1)+2.%D+R# (PEXT.(R,PINF,P0,21,22)
~PINT(RyPOsPINF,LY1,Y2)))/(U{1)=R=R)
PRINT FORMAT OUT1,R,U{(1),0U{1)*uU(1),U(2),LIGQPRS.(R),PEXT.
(Ry,PINF,P0,Z1,22)
WHENEVER TAG2.E.4%
SR(J})=R
SutJi=utl)
J=J+1
cND OF CONDITIONAL
TAGL=1
TAG2=TAG2+1
WHENEVER R+DELR.L..10,DFELR=.13-R
TRANSFER T0O GO
END UF CONDITIONAL
PRINT FORMAT TABHDZ
DULL)==(1.5#U(1)=U(1)*R+C¥U{1)+2.#D+R*(PEXT.(RyPINF4PUs»Z1,22)
~PINT.{RyPO+PINF,4Y1sY2)))/7(U(1)=R%R)
PRINT FORMAT OUT1,R,U{1),DU(L)#U(1),U{2),LIQPRS.(R)yPEXT.(R,P
INF,P0,21,22)
SR(J)=R
Sutdi=uil)
J=Jd+1
TAGLl=1
TAG2=1
I=7
TAG3=10G
DELR==1.E-%
TRANSFER TU GO
WHENEVER DUCL)eLee»TRANSFLR TO SLO(1)
WNHENEVER TAGl.L.TAG3
TAGL=TAGL1+1
WHINEVER R4DELR.La+519DELR=.51-R
TRANSFER TO GO
OR WHENEVER TAGl.E.TAG3.AND.TAG2.L.9
DUCL)==(1e5#U(L)=U(L1)#R+C2U(L)+2.#D+R*{PEXT.(R,PINF,P0,21,22)
“PINT (RyPUIPINFsY1sY2)) )/ (U(1)#R%R)
PRINT FURMAT QUTL.RsU(1),DU(L)*U(1),U(2),LIQPRS.(R),PEXT.
(RyPINF,P0,21,22)
WHENEVER TAG2.E.5
SR(J)=R
SutJi=u(l)
J=J+1
END OF CONDITIQONAL
TAGL=1
TAG2=TAG2+1
WHENEVER R+DELR.L.+J1,DELR=,C1-R
TRANSFER TO GO
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END OF CONDITIONAL
PRINT FORMAT TABHD2
DU(L1)==(1.5#U(1)eU(1)sR+CxU(1)+2,#D+R#(PEXT.(RyPINF,P0,21,22)
1 ~PINT.{RyPOWPINF,Y1,Y2)))/(UlLl)®#R=R})
PRINT FORMAT OUTL1,R,yUl1}s0U{L1)#U(L1),U(2),LIQPRS.(R)4PEXT.(R,P
1 INF,P0,21,22)
SR{J)=R
Suta=ull)
J=J+1
TAGl=1
TAG2=1
1=8
TAG3=100
DELR=-1.E-4
M=0
THROUGH FINISH,FOR VALUES OF DELR==1.E=5;-1.E=64=-1.E~74-1.E-8
1 ,—1.E-9,—1.E-10
M=M+1
PRINT FORMAT TABHD4,M,DELR
TRANSFER TO GO
LOC(8) CONT INUE
WHENEVER DU(1).L.0.,TRANSFER TO SLOI(1)
WHENEVER TAGl.L.TAG3
TAGL1=TAG1+1
WHENEVER R+DELR.L.—190.#DELR,DELR=={R+150.#DELR)
TRANSFER TO GO
OR WHENEVER TAGl.E.TAG3.AND.TAG2.L.9
DU(L1)==(1.52U(1)#U(L)#R+CnU(1)+2.#D+R*(PEXT.(R,PINF,P0,Z1422)
1 -PINT.{R,yPOLPINF,YLy¥2)))/(U{1)%#R#R)
PRINT FORMAT OQUTL1,R,U(L),DULL)*#U(1),U(2)sLIQPRS.(R),PEXT.
1 (RyPINF,4P0,21,22)
WHENEVER TAG2.E.5
SR{J)I=R
SutJlr=u(l)
J=J+1
END OF CONDITIONAL
TAGl=1
TAG2=TAG2+1
WHENEVER R+DELR.L.~-100.#DELR,DELR=-(R+100.#DELR)
TRANSFER TO GO
END OF CONDITIONAL
PRINT FORMAT TABHDZ2
DULL)==(1.5#U(1)#U(1)nR+CoU(1)+2.#D+R%(PEXT.{RyPINF,P0,71,22)
1 -PINT.(R,PO,PINF,Y1,Y2)))/(U(]1)%R=R}
PRINT FORMAT OUTL,R,U{1),4DU(L)#U(L),U(2),LIQPRS.(R)4PEXT.(R,P
1 INF,P0,21,22)
SR({JI=R
SUlJy=ull)
J=J+1
TAG1=1
TAG2=1
FINISH CONTINUE
ALPHA THROUGH PFIELD,FOR K=1,14K.EaJ
PRINT FORMAT TABHD5,SR({K)
I=1
THROUGH PFIELD,FOR RL=1eye1ly1.G.52
P=PEXTo(SR(K)yPINF,P0,21,Z2)#(RL-14)}/RL+{SU(K)#SU[K)}/(2.2RL)
1 ~({SU(K)*SU(K)})/(2.#RL*RL#*RL*RL)—-(SU(K)#C+2,#D)/(SR(K)#RL)+PIN
2 To{SR(K)yPO,PINF,Y1,Y2)/RL
V=SU(K )/ (RL#RL)




PFIELD

SLo(1)

SLOC(6)

SLOC(4)

SLOC(5)

FRST(1)

SLoc(3)
SLOC(1)

SLOC(2)
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PRINT FORMAT OUTP,RL, RL®#SR{K) P,V
I=1+1

CONTINUE
TRANSFER TQ START
CONTINUE
PRINT FORMAT TABHDZ2
DU(L)==(1.52U(1)#U(1)sR+CeU{1)+2.#D+R%(PEXT.(R,PINF,PD,21,22)
~PINT.(RsPOsPINFY1lyY2)))/(U(1)aR#R)
PRINT FORMAT OUT1,RsU{1),DU(L1)}®U{1),U(2)4LIQPRS.(R),PEXT.{R,P
INF,P0,21,22)
TAGl=1
TAG2=1
TAG3=1
TEN=1.
M=15
TEMUL=U(1)
TEMU2=U(2)
TEMR=R
DELR=-R/(1CO.=#TEN)
U(l)=TEMU]
U(2)=TEMU2
R=TEMR
DELR=-R/(102.#TEN)
TRANSFER TO FRST(RKDEQ.{(2))
DUCL)=—{1.5#U(1)aU(1)aR+(%U(]1)+2,#D+R*(PEXT.{RyPINF,P0,21,22)
~“PINT (RyPOLPINF,Y1,Y2)))/(U(1)%R%R)
DU(2)=1./U{1l)
TRANSFER TO SLOC(RKDEQ.({))
WHENCVER U(1).G.C.

uf{lir=0.

TAG3=2

END OF CONDITIONAL
DU(1)=={(1.5#U(1)%U(1)#R+CeU(1)42.#D4+R*(PEXT.(R,PINF,P0,21,22)
—PINT.(R4POJPINF,Y1,Y2))})}/({U(]1)eR=R)
DU(2)Y=1./0(1)
TRANSFER TO SLOC(3)
WHENLVER U(1).G.CayTAG3=2
WHENEVER TAG3.E.2

TEN=1C.*TEN

WHENEVER TEN.G.1.E25,TRANSFER TO ALPHA

TAG3=1

TRANSFER TO SLOC(4)

END OF CONDITIONAL
WHENEVER TAGl.L.13

TAG1=TAG1+1
OR WHENEVER TAGl.E.1l0
DU(L)=~(1la5#U(1)oU(1)oR+CoU(1)+2.8D+Re(PEXT,(RyPINF,P0,21,22)
=PINT.(RyPOJPINF,YLl,sY2)))/(U(]1)eR=R)
PRINT FORMAT OUTL,R,U(1),DU(L1)*U(1)4U{2),LIQPRS.{R)yPEXT.(RyP
INF,P0,21,22)
TAG1=1
TAG2=TAG2+1
END OF CONDITIONAL
WHENEVER R.LE.1.E~-8
DULLI==(152U(1)2U(1)eR+CaU(1)+2.,4D+Re(PEXT.(RsPINF,P0,21,22)
-PINT.{RsyPO,PINF,sYLl,Y2)))/(U(l)eReR)
PRINT FORMAT QUTL1,R,Ul1),0U(L)eu(l),U(2),LIQPRS(R)PEXT.(R,P
INF,P0,21,22)
TRANSFER TO ALPHA
END OF CONDITIONAL
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WHENEVER TAG2.E.M.OR.{TAGl.E.1.AND.TAG2.L.10) .256
SR{J}=R #257
SUlJI=ull} +258
J=J+1 259
END OF CONDITIONAL 260
WHENEVER TAG2.E.M;M=M+15 *261
WHENEVER TAG2.LE.150 *262
TRANSFER TO SLOC(6) *263
OR WHENEVER TAG2.G.150 264
TRANSFER TO ALPHA *265
END OF CONDITIONAL €266
INTEGER TAGLsTAG2,TAG3,1+MyJ,K «267
DIMENSION U(2),0U(2),Q(2) . 2568
DIMENSION SR(75),SU(75) 269
VECTOR VALUES TABHD1=$1H1,S9,69HSOLUTION TO PORITSKY BUBBLE C 270
1 OLLAPSE IN VISCOUS,INCOMPRESSIBLE LIQUID/LHC,S9,86HTHE LIQUID .270
2 CONSTANTS,NORMALIZED TO THE VALUES FOR WATER AT 1 ATM AND 2& 272
3 DEGREES C, ARE/1HOs520,425HVISCOSITY MU=,1E15.6/1 272
4 H 5520,25HSURFACE TENSION SIGMA=y1E15.6/1H ,S20425HPRES. A 270
S T INFINITY PINF=91E15.6/1H ,S20+25HINITIAL RADIUS (MILS) RO «27G
6 =41E15.6/1H ,S20,25HDENSITY RHO=y1E15.6/1HC 15946 273
7 OHYTHE CORRESPONDING VALUES OF THE DIMENSIONLESS PARAMETERS AR 8272
8 E/1HJ452C,9HVISCOSITY,S8+2HC=y1E12.6/1H +526, 19HSURFACE TENSI 2715
9 ON D=,1E12.6#$ 273

VECTOR VALUES TABHD2=$lH-e=$ 271

VECTOR VALUES TABHD3=$1H-95544HR/R0,59,8HVELOCITY,55,12HACCEL 272
1 ERATION,S7,4HTIME,S98HPRESSURE yS5+IHEXTPRES. #$ 272

VECTOR VALUES TABHDG=$1H+,591,2HM=4113,55,5HDELR=,1E15.6+$ %273

VECTOR VALUES TABHD5=$1H1,S3+96HPRESSURE AND VELOCITY FIELDS 274
1 IN THE LIQUID WHEN THE RATVIO OF BUBBLE RADIUS TO INITIAL RADI 274
2 US IS s1E12.6/1H-3S12,14HRADIUS IN LIQ.»S1,14HLIQ. RADIUS/RO, 274
3 S3,12HLIQUID PRES.»S$S2,13HLIQ. VELDCITY#$ 274

VECTOR VALUES OUT1=$1E14.6,5E15.6¢% 275

VECTOR VALUES QUTP=$1H ,S10+4E15.6#$ P76

INTERNAL FUNCTION LIQPRS.[X)=PINT.(XsPO,PINF,Y1l,Y2)-{2.20+CeU 277

1 {131/X 277

END OF PROGRAM 2278

THE FIRST OCCURRENCE OF A FLOATING POINT VARIABLE USED AS A SINGLE OR DOUBLE SUBSCRIPT WAS IN THE STATEMENT ENDING
TRANSFER TO LOCIRKDEQ.(C)) 234
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$COMPILE MAD,PUNCH OBJECT,PRINT OBJECT

MAD (24 SEP 1964 VERSION) PROGRAM LISTING see cee oee

EXTERNAL FUNCTION(R,PINF,P0O,Z1,22)

ENTRY TO PEXT.

WHENEVER Z1.0.%.

FUNCTION RETURN PINF/({PINF=-PU)

OR WHENEVER Z1.E.1l.

WHENCVER R.LE. .3

FUNCTIUN RLTURN Z.82/(PINF-PO)

OR WHENEVER R.G. .3

FUNCTION RETURN (.{4/(R-.25)+.32)/(PINF-PQ)

END UF CONDITIONAL

OR WHENEVER Z1 .E. 2.9

WHENEVER R JLF. .4 )
FUNCTION RETURN(<.787+(.4-R}1#3.15)/(PINF-PO)

UR WHENEVER R 4Ge Lo4
X=(JeT2-R1/(433

ALPHA=X
ANSWR=X
COEF=1l.
THROUGH LOCL,FOR N=2,14.ABS.ALPHA.L., .57C1#.ABS.ANSWR
A=2.#N~1,
B=2.eN=-2,
C=2.8N-3,

COEF=C/B«C0EF
ALPHA=(COEFeX ., P, A) /A
ANSWR=ANSWR+ALPHA
LOC1 CONTINUC
FUNCTION RETURN{..255#ANSWR+D .45}/ (PINF-PO)
END UF CONDITIONVAL
END OF CONDITIONAL
INTEGER N
END OF FUNCTION
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$COMPILE MAD,PUNCH QOBJECT,PRINT OBJECT

MAD (24 SEP 1964 VERSION) PROGRAM LISTING eee cee aee

EXTERNAL FUNCTION(R,PO,PINF,Y1,Y2)

ENTRY TO PINT.

FUNCTION RETURN (PO/(PINF-PO))#R.P.(-3,.#Y]1)
END OF FUNCTION




APPENDIX TIII

NUMERICAL SOLUTION FOR COMPRESSIBIE LIQUID

The solution for the compressible liguid is similar to that
for the incompressible liquid in that the bubble wall motion is com-
pletely determined first, and then the pressure and velocity fields are
determined along an outgoing characteristic path for selected initial
conditions a* various bubble radii. Equations (36) through (40) for
motion of the bubble wall are written as follows

dli.—..—l&(U -3C + (M*C + LdH (A-10)
dR R\u-¢/ RU\u-¢/ ¢ 4R

dT. L e= (’,—(—E-’ﬁ)l/n (a-12)

F+B

C(P) :(Y)(P+5)>/2 ;4.%)'/2" (A-13)
+

n-1
}J(;?> = Y1(796438> f91'55;>Yﬂ (A-14)
(“") Pao ?*B
yu U

P(R).—.E(R)—_ZR_O'

(A-15)
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It is necessary t0 analytically obtain the term dH/dR in Equation (A-10)

as follows.

i dud? | (s[4, 2 upau NEVATY R
dR ™ dPd €<P+B LdRﬁk' f R* v

Equation (A-16) is substituted into Equation (A-10) resu.:ing in
/
L) (7&#8)/” _
dR | CB,R\ P+& (A-17)

. PPN )
_ UfuU=3¢ u+rc), | df, 20, wl
2/?< U - >+RU< ) C&,<P+5/ dR TReT sz

If the above equations were normalized in a manner similar to the incom-

pressible equations, they would remaln essentially unchanged, still con-
taining the scaling parameters ¢ and p , so there is no analytic

advantage to such a procedure. Instead, it was declded to use a normel-
ization similar to that of Flynn(6o) which permits a convenient interpre-
tation of the real magnitude of the normalized variebles. The following

constants for water at 1 atm end 20°C are used.

P, = 62.31 lbm/ft? (60)
C, = 4865.5 ft/sec (60)
o, = 4.982 x 107> 1bf/ft (69)
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1

2.088 x 107 1bf - sec/rt2

1 atm

2116.2 1bf/ft?

(90)

The variables are then normalized for computation as in the following

table, where again the primed quantities are normalized.

the notation used for these variables in the computer program is also

given.
involving the above constants for water.

these as follows.

2
p.C
K = -2° - 2,1666 x 10"
aog
9% 2,852 x 1072
Ko = asRy, R,
HAC LY
K5 - 50 _ .‘:.Llﬂ (when Ro
aoRo R,
K - MoB _ 2.6584 x 107
4 COQORO RO

Substitution of the normalized variables

Several dimensionless quantities occur in the normalized equations,

It is convenient to designate

(when Ry is in mils, in. x 107°)

is in mils)

(when RO is in mils)

into the equations gives the

following set of equations which were programed for computer solution.

For convenience,
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Q( 3’_'_ +ﬁ_'<u}c' o p,,?g)

Ju ciu'-¢' ) u\e-u/cek\pr8

dR R s 4k 729+B')’/"
c’ﬁ; p'+B

/Y\— '
\RdP R, (A-18)

-t e (Eg) 5 &g )

n-=/

H(P) = _(ForB) ( P'+5_'> "
(ﬂQJ} K1 Co B+ B

"7 A wpyly I,
PR) = P(R) - phkur' — tksuil

R 3

The variables p; » Py' and dpo‘/dR' are specified in external functionms,
and for a given function there are one or two parameters which will alter
the bubble behavior, the values of which can be inserted as data without
changing the program at all. Also, the external functions can be com-
pletely changed in form without altering the main program, just as in the
solution for the incompressible liguid.

The initial conditions of U' and R' present some difficulty.
It can be shown that for very small velocityband for R' % 1, the equation
of motion is approximately |

Ju P ___H_,/ ,
d K R' W
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Assume that for small U' , the variation in H' with R' is small

so that it mey be assumed constant. Therefore,

U' ¥ -\ /2H' 1n R (19)

where the velocity logarithmically approaches zero as R' approaches
1.0. 1In order to solve Equation (A-19), where H' is a function of u'y,
a repetitive procedure was used at a fixed value of R' = 0.9999, and

P' and then H' and U' were calculated. Several repetitions gave a
set of values of U', P', and H' which satisfied (A-19) exactly. These
values of U' and R' were used as initial conditions in the Runge-
Kutta procedure. Also, Equation (A-19) was solved for ten increments in
R' from 0.9999 to 0.9990 and the curve compared with that obtained from
the Runge-Kutta solution and no significant difference in magnitude or
slope of U' +vs R' was apparent.

The bubble wall velocity and the time are obtained as functions
of bubble radius with no reference to the velocity or pressure fields in
the liquid. The Kirkwood-Bethe assumption on wave propagation permits
such a procedure. At 97 selected values of the bubble radius a charac-
teristic path originating on the bubble wall is traced through the lig-
uid. The initial values for this procedure are obtained from a table
of values of U', H', T', R', P' and C' at the bubble wall which is
stored in memory during the solution for the wall motion. The equations

for the characteristic path, 41, 46, 47, 48, are as follows
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i 4 I

(Pev) e = (Rrolz- o) LoD (E"’ )>+ J] -
r m > +B

The normalized form of these equations is unchanged except that the
variables then represent normalized quantities.

The solution to these equations is sets of characteristic curves,
as many sets as desired up to the total number of increments in bubble
wall radius used in the solution for the bubble wall motion. A set of
these curves was initiated from each of the 97 printed values of bubble
radius (many more than 97 increments were actually used in computing bub-
ble wall motion however). Since time is the independent variable used
along a characteristic path, each set of curves consists of a table with
five columns -- time, radial position, pressure, velocity, and Mach
number -- arranged so that one can enter the table in computer storage
with a given value of time and obtain the corresponding values of the
other four variables. There are 56 values of these variables printed

for each set of curves (although more intermediate values are calculated),




but only the first 4O of these are stored in memory. The 97 sets of
curves, each set with five variables and =0 values, are stored as they
are computed in a three dimensional array called URV (K, M, L) by the
internal function STURV, giving a total of 19,400 stored values along
characteristics.

After completion of the computation, printing and storage of
the characteristic curves, the values of the variebles throughout the
liquid at a fixed instant of time were obtained, rather than the values
along a path where time was continually changing. The value of time at
the start of each path, which corresponded to the time at the bubble
wall, was selected, and the table of each set of curves which originated
at an earlier time was entered and the values corresponding to that time
vwere selected and printed for each of the four variables; radial position,
Pressure, velocity, and Mach number. A library subroutine was used
which provided a linear interpclation in the table. Up to a fifth order
interpolation could have been specified as easily, but for computing
time economy the first order was chosen. The printed values along the
characteristic curves show that a linear interpolation between the avail-
able values provides a very good approximation to a smooth characteristic
curve.

The very rapid change in variasbles with respect to time when
the bubble wall velocity was large, necessitated careful consideration
of numerical accuracy. The machine has inherently eight digit arithme-

tic accuracy, which was not sufficient for the later stages of bubble
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collapse with the time normalization used. Since in the formulation of
the problem for bubble wall motion, the variable, time, does not appear
explicitly in any form but as the derivative, dT/dR s the actual numer-
ical value of time may be changed at will during computation. Therefore,
in computing the bubble wall motion, before time became of such a magni-
tude thet there was no significant change in eight digits for each step,
the time zero was changed. Similarly, along a characteristic curve time
could be initialized starting at the bubble with the value zero thereby
providing a much more significant numerical change as the path was com-
puted. However, this method introduced some additional difficulties
when the tables of characteristic curves are entered with a value of time
based on the same normalization but with a different zero point. Never-
theless, this difficulty was overcome and the resulting characteristic
curves could be plotted such that each curve had an accuracy to at least
the eleventh significant digit, with the important interpretive conven-
ience of being related to real time by a simple constant normalizing

guantity.
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NORMALIZATION AND COMPUTER NOTATION FOR COMPRESSIBIE LIQUID (CONT'D)

Stored values of variables
at bubble wall which are
used to initiate character-

Initial internal pressure (atm)

Increment in bubble radius

Constant in equation of state

Constants, evaluated for
repetitive computational

Constant = 2,166634 x 10)+

Surface tension parameter
Viscosity parameter
Viscosity parameter

Velocity derivative

Variable Normalized  Description
Variable
TC,/R, T
u/c, U
H/C2 H'
istic path
R/R, R’
P/aO P!
c/c, cr
(negative)
n n
(=7.)
@-Yn -
(n-iVEn - efficiency
l/n -
pOCoz/aog K
0o/a-oRo K>
MoCo/20Rs K3
uog/copoRo Ky
dU/dR au'/aR!
dT/dR dT' /4R’ Time derivative
¥ -

Exponent in internal pressure
variation as (R')-3

Input data to determine DELR
Variable pressure in equa-

tion of state expressions =
FIF. (R,X)+B

Computer Pro-
gram Notation

ST
SU
SH
SR
SP
sC

A

DELR

K2
K3
K L4
F (1)

F (2)

GAMMA

INCRMT

Pl
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NORMALIZATION AND COMPUTER NOTATION FOR COMPRESSIBLE LIQUID

Variable Normalized  Description
Variable

U/Cq U’ Bubble wall velocity

c/c, ct Sonic velocity in liquid at
wall

R/R, R’ Bubble radius

T/Ro/Cq T Time

H/c 2 H' Enthalpy

P/a, P! Pressure in liquid at wall

po/aO po' Internal pressure

P./80 Do’ Variable pressure at infinity

pw/po ' Density at infinity

B/a, B! Parameter in equation of state

p/po W' Liquid viscosity

o/a, g Liquid surface tension

r/Ro r' Radius in liquid

z/ROCO2 z' Characteristic quantity

u/CO u' Particle velocity of liquid

cm/co c ' Sonic velocity at infinity

c/cO e’ Sonic velocity in liquid

P/ao P Pressure in liquid away from
wall

t ¢, /R, £ Time from start of character-
istic

dt c /R, dt' Increment in time on charac-

teristic

Computer Pro-
gram Notation

Y(1)

C
R

Y(2)

H1

P

PINT, (R,A,GAMMA)
PINF.(R,X)
RHOINF

B

MU

SIGMA

PL
TL

DELTL
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NORMALIZATION AND COMPUTER NOTATION FOR COMPRESSIBLE LIQUID (CONT'D)

Variable Normalized Description Computer Pro-
Variable gram Notation
RO 1. Initial bubble radius RO
pw/aO Py Initial pressure in liquid X
- Three dimensional array in
which characteristic curves
are stored URV(K,M, L)

- Internal function for storing
variables at bubble wall CHARAC,

- Internal function for calcula-
ting wall pressure and printing
wall variables PRS,

- Internal function for storing
values along characteristic
for later use STURV.
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COMPUTER LISTING - COMPRESSIBLE LIQUID

$COMPILE MAD,PUNCH OBJECT,PRINT OBJECT,FULL DUMP

MAD (24 SEP 1964 VERSION) PROGRAM LISTING eoe eoe oo

NEW

INITAL

OVER

CONTINUE

FLAG=1

DIM(1)=3

DIM(2)=1

DIM(3)=5

DIM(4)=4C

EXECUTE FTRAP.

READ DATA,MU,SIGMAsByNysXyROs INCRMT,GAMMA
EX1=(N-1.)/N

EX2={(N-1.)/(2.%N)

EX3=1./N

EXECUTE SETRKD.(2,Y(1)+F(1),Q(1)yRyDELR)
K1=2.166634E4

K2=2.825187E-2/R0O

K3=.,575986/R0

K4=2.65843E~-5/R0

R=1.
Y(1)=C.
Y(2)=i.,

DELR==1./INCRMT

Pl=PINF.(R,X)+B

RHOINF={P1/(B+1.)).P.EX3

J=1

CINFSQ=(N#*P1)/(RHOINF*K1)

PRINT FORMAT TABHD1,MU,SIGMA,PINF.(R,X)},R0O,RHOINF

PRINT FORMAT TABHDZ

TAGLl=1

P=PINT.(RyA,GAMMA)}=(2.#K2#SIGMA+4. K3 #Y(]1)2MU) /R
C=SQRT.(CINFSQ=((P+8)/P1).P.EX1}
Hl=(P1/(K1+EX1#*RHOINF) )* (((P+B)/Pl).P.EX1l-1.)

PRINT FORMAT OUTLsReY(1)/CeY(1)4%aBsY(2)4PyHL,PINT.{RsAyGAMMA
J2sPINF. (R, X)

THROUGH INITAL,FOR R=1.+DELR,DELR,TAGl.G.1C

Pl=PINF,(R,X)+8B

RHOINF={P1l/(8+1.}).P.EX3

CINFSQ={N#P1)/(RHOINF=K1)

P=PINT.(RyA,GAMMA) ~(2,#K2#SIGMA+4 ., 2K3=Y (1) *MU)/R
HI=(P1/(K1#EXL#RHOINF) ) # (({P+B)/Pl).P.EX1-1.)

C=SQRT. (CINFSQ#((P+8)/P1).P.EX])

Y{l)=={2.#H1#ELOG. (R))Pss5

Y{2)={R-1.)/Y(1)
FIL)=({((Y(1)/2.)%(Y(1)=3,#C)+(HL/ZY(L))=(Y(L)+C))/(C-Y( L))+ (P
1/{(P+B) ) eP.EX3/(K1#C#RHOINF) )= (R#DPINT.(RyAGAMMA)+PINT.{RyA,
GAMMAI=P) )/ (R+ ({4, #K4aMU/ (C#RHOINF) })#{(P1/(P+B)) .P.EX3)

PRINT FORMAT OUTLyRaY(1)/CoY(1)sF(L1)eY{(2)yPyHL1,PINT.(RyA,GAMM
A}y PINFL(RyX)

TAGL=TAGl+1

CONTINUE

PRINT FORMAT 0QUT2

TAGLl=1

Y{l)=9.

R=1++DELR

CONT INUE




GOsuB

GO
Ltoc(1)

Loc(2)

LOC(3)

LOC(4)

Pl=PINF.{R,X)+B
RHOINF={P1/({B+1.)).P.EX3
CINFSQ=(N#P1)/ (RHOINF#K1)
P=PINT. (RyAyGAMMA) {2, #K24SIGMA+4 . #K3eY{1)eMU) /R
H1=(P1l/(K1#EXL#RHOINF) )& {((P+B)/PLl).P.EXl~1.)
C=SQRTL{CINFSQ#((P+B)/P1l).P.EXL)
Y(1)=2=(2.#H1*ELDOGa(R))eP.ee5
Y(2)=(R=1.)/Y(1)
FILY=0(Y(L)/2.) %Y (1)=3euCI+(HL/Y(1))e(Y(1)+C))/Z{C-Y{L))+((P
1/7(P+B)) P EX3/(K1#C#RHOINF) ) # (R«DPINT. (RoAyGAMMA)+PINT.(R,A,
GAMMA) =P} ) /{R+ (4. 2K4#MU/ (CRHOINF) )#(P1/(P+B))eP.EX3)
PRINT FORMAT QUTL,RyY(1)/CoY(1)aF(1)3Y(2)yPyHLPINTe(RyAyGAMM
A)yPINFL(RyX)
TAG1=TAG1+1
WHENEVER TAGl.G.17,TRANSFER TO GOSUB
TRANSFER TO OVER
CONTINUE
PRINT FORMAT OQuTZ2
EXECUTE CHARAC.
I=3
TAGl=1
TAG3=1
TRANSFER TO LOC(RKDEQ.(T))
CONT INUE
Pl=PINF.(R,sX)+B
RHOINF=(P1/(B+1.)).P.CX3
CINFSQ={N#P1)/ (RHOINF#K1)
P=PINT.(RyA,GAMMA)— (2. #K2&SIGMA+4  #K32Y (1) #MU) /R
M=5
TRANSFER TO FINISH
END OF CONDITIONAL
C=SQRT.(CINFSQ= {{P+B)/Pl).P.EX1)
H1=(P1/(K1#EX1#RHOINF) )« ({(P+B)/P1l).P.EX1-1.)
FIL) =Y 1) /2.2 (Y (1) =3.8C)+{HL/Y{1}i={Y{1}+CIIZ{C-Y{L)I+ (P
1/(P+B) ) P.EX3/(K1#CaRHOINF ) )= (ReDPINT.(RyA,GAMMA) +PINT. (R, A,
GAMMA)-P) )/ (R+(4.#K4eMU/ (CERHOINF) )= (P1/(P+B)).P.EX3)
Fl2)=1./Y(1)
TRANSFER TO GO
CONTINUE
TRANSFER TO LOCI(I)
WHENEVER TAG3.L.9
EXECUTE PRS.
TAG3=TAG3+1
TRANSFER TO GO
END OF CONDITIONAL
PRINT FORMAT 0OUTZ2
EXECUTE PRS.,
EXECUTE CHARAC.
I=4
TAGl1=1
TAG3=1
TRANSFER TO GO
WHENEVER TAGl.L.1D
TAG1=TAGL+1
TRANSFER TO GO
OR  WHENEVER TAGl.E.lG.AND,TAG3.L.9
EXECUTE PRS.
TAGl=1
TAG3=TAG3+1



LOC(5)

LOC(6)

LOC(T)
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TRANSFER TO GO
END OF CONDITIONAL
PRINT FORMAT QUT2
EXECUTE PRS.
EXECUTE CHARAC.
I=5
TAGL=6
TAG3=1
WHENEVER TAGl.L.1%20
TAGL=TAG1l+1
TRANSFER TO GO
OR WHENEVER TAGLl.E.1U0.AND.TAG3.L.9
EXECUTE PRS.
EXECUTE CHARAC.
TAGL=1
TAG3=TAG3+1
TRANSFER TO GO
END OF CONDITIONAL
I=6
PRINT FORMAT 0QUTZ2
EXECUTE PRS.
EXECUTE CHARAC.
TAGLl=1
TAG3=1
TRANSFER TO GO
WHENEVER F(l)eLeUs, TRANSFER TO SLO(1)
WHENEVER TAGL.E.BU0eOReTAGL.E.6CL.0R.TAGL.E.4D0C.0R.TAGL.E.2(C
EXECUTE PRS.
EXECUTE CHARAC.
END OF CONDITIONAL
WHENEVER TAGl.L.1{0D
TAGL=TAGl+1
WHENEVER +1+G.R+DELR,DELR=.,1-R
TRANSFER TO GO
OR WHENZVER TAGLl«clfil.AND.TAG3.L.8
EXECUTE PRS.
EXECUTE CHARAC.
TAGl=1
TAG3=TAG3+1
WHENEVER «1leGoR+DELRyDELR=.1-R
TRANSFER TO GO
END OF CONDITIDNAL
PRINT FORMAT 0UT2
PRINT COMMENTS TIME PRINTED AFTER TIML REACHES 134.7 IS THE [
NCREASE IN TIME BIYOND 134..3%
EXECUTE PRS.
EXECUTE CHARAC.
TAGl=1
TAG3=1
DELR==1./INCRMT
=7
TRANSFER TO GO
WHENEVER F(1l).Lees TRANSFZR TO SLOC(L)
WHENEVER TAGL.L.1D2
TAGL=TAG1+1
TRANSFER TO GO
OR WHENEVER TAGL.E.170. . AND.TAG3.L.9
EXECUTE PRS,
EXECUTE CHARAC.
TAGLl=1




LOCP(4)

LOCP(5)
GOP{1)

Loce(3)
Lace (1)

Locer(2)
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PRINT FURMAT OUTCH»SR{K}ySP(K)SU(K)SUIK)/SCIK)ST{K),DELTL
TAG2=2
V{l)=TEMV]
Vi2)=TEMV2
PL=TEMP
CL=TEMC
TL=TEMT
DELTL=V(2)/(TENsCL)

TRANSFER TO GOP{RKDEQ.({C))
FUL)={Ze(CL4VI1)}/V(2)=-2.4CLeCLeVI1) )}/ (V(2)=(CL-VI1)))
F{2)=CL+V(1)
TRANSFER TO LOCP(RKDEQ.(2))
WHENEVER V{1)aGeleWsORl(Z/VI2)-V{1)aV(1)/2.)%(N-1.)/CINFSQ+]l.
)'LO;:.'DR.V(Z).L.O.

vil)=0.

v(2)=l.

TAG1=2

END OF CONDITIONAL
PL=Ple((Z/VI{2)=V(1)#V{1)/2.)#(N=-1.)/CINFSQ+1s)eP.{N/{N-1.))~8
CL=SCRT.I{CINFSQ#((PL+B)/Pl).P.EX])
FILI=(Z#(CL+V(1))/VI{2)-2.#CL#CL#V(1))/(V(2)e(CL-V(1)))
F(2)=CL+V(1}
TRANSFER TO LOCP(3)
WHENEVER V(1) aGe0aoORL{(Z/VI2)-VI1)#VI{1)/2.)#(N=-1.)/CINFSQ+].
’OL.L..OR.V(Z).L.G"TAGI=2
WHENEVER TAGl.E.2

TEN=1D.#TEN
WHENEVER TEN.G.1.E25.0R.DELTL.L.1.E-25,TRANSFER TOPFIELD

TAGl=1

TRANSFER TO LOCP{4)

END OF CONDITIONAL
WHENEVER TAG2.LE.2¢
PL=PLo{{Z/VI2)-V{1}avil]/2.1#{N-1.)/CINFSQtlelePo{N/{N-1.))-B
CL=SQRT.{CINFSQ={((PL+B)}/PLl)}.P.EXL]
EXECUTE STURV.(K,TAG2)
PRINT FORMAT OUTCH,V(2)4PLoV{1)sV{1)}/CL,TL,DELTL

TEMV1=V{1)

TEMV2=V(2)

TEMP=PL

TEMC=CL

TEMT=TL

DELTL=V(2)/(TEN=CL)

TAG2=TAG2+1

TRANSFER TO LOCP(5)
OR WHENEVER TAG2.LE.56.AND.TAG3.E.5
PL=PL#({2/V{2}-VI(1)eV(1)/2.)#(N-1.)/CINFSQ+1.).P.{N/(N-1.))-B
CL=SQRT.{CINFSQ#({PL+B)/Pl).P.EX1)
WHENEVER TAG2.LE.4Q+EXECUTE STURV.(K,TAG2)
PRINT FORMAT OUTCH,.V(2)4,PLsVI(1)4V{1)/CL,TL,DELTL

TEMV1=V(1)

TEMV2=V(2)

TEMP=PL

TEMC=CL

TEMT=TL
DELTL=V(2)/(TEN=CL)
WHENEVER TAG2.E.56,TRANSFER TO PFIELD
TAG2=TAG2+1
TAG3=1
TRANSFER TO LOCP(5)

END OF CONDITIONAL




LOC(8)

FINISH
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TAG3=TAG3+1
WHENEVER .O01.G.R+DELR,DELR=,01-R
TRANSFER TO GO
END OF CONDITIONAL
PRINT FORMAT QUT2
EXECUTE PRS.
EXECUTE CHARAC.
TAGL=1
TAG3=1
DELR=-1./INCRMT
1=8
THROUGH FINISHsFOR M=1,1,M.G.4
DELR==10++P . (~M=4)
TRANSFER TO GO
WHENEVER F(1).L.0.,TRANSFER TO SLO(1)
WHENEVER TAGL.L.160
TAGL=TAGL+1
WHENEVER 10+4P.(~M=2).G.R+DELR,DELR=1C+.P. (-M=2) =R
TRANSFER TO GO
OR WHENEVER TAGl.E.1L0.AND.TAG3.L.9
EXECUTE PRS.
EXECUTE CHARAC.
TAGL=1
TAG3=TAG3+1
WHENEVER 10..P.(-M-2).G.R+DELR,DELR=1C..P. (-M-2)=R
TRANSFER TO GO
END OF CONDITIONAL
PRINT FORMAT QUT3,M+1,DELR/Lu.
WHENEVER M.E.2,PRINT COMMENTS TIME WHICH IS PRINTED AFTER R=1
X1J-4 1S THE CHANGE IN TIME FOR PRINTED CHANGE IN BUBBLE RADI
uss
EXECUTE PRS.
EXECUTE CHARAC.
TAGl=1
TAG3=1
CONTINUE
EXECUTE SETRKD.(2,V{1)4F(1),Q(1)sTL,DELTL)
THROUGH PFIELDyFOR K=1,15K.EoJ
PRINT FORMAT TABHD4,SR(K)
M=3
TAG1=1
TAG2=1
TAG3=1
TEN=12.
TEMVI=SU(K)
TEMV2=SR(K)
TEMP=SP(K)
TEMC=SC(K)
TEMT=2.0
TL=C.0
VI2)=SRI(K)
PL=SP(K)
V{1)=SU(K)
CL=SC(K)
DELTL=SR{K)/(23.%#SC(K))
PL=PINF.(SR{K),X}+B
RHOINF=(P1/(B+1.)).P.EX3
CINFSQ=(N*P1)/ (RHOINF*K1)
Z=SRK)*(SHIK)+SU(K) #SU(K)/2.)
EXECUTE STURV.(K,1)




PFIELD

PRT2

PRT1

PRT4

PRTS

PRT3

PRPRNT
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TAG3=TAG3+!1
TRANSFER TO LOCP(S5)
CONTINUE
THROUGH PRPRNT ,FOR K=1y1,K.E.J
PRINT FORMAT TABHD3,URV(K,1s1),SR(K)
WHENCVER FLAG +Ge 1 <AND. K L. FLAG
PRINT FORMAT DUTPLURVIKs291) yURVIKs3,1)URVIKe4sl) URVIKy5,1)
THROUGH PRT1,FOR L=K-1y-1,L.L.1
TIP=URVILsl,1)
URV{L,1y1)=0.C
WHENEVER URV(Ky1s1)-TIP.G.URV{L,1,4(),TRANSFER TO PRT1
THROUGH PRT2,FOR M=2,1,M .G. 5
PT(M)=TABL(URVIK, 191 )-TIPJURVILy19s1)sURVILIMypl)yLlylelys4CySWM
))
WHENEVER SW(M) .E. 2.,PT(M)=5,
CONTINUE
PRINT FORMAT QUTP,PT(2)...PT(5)
URVIL,1,1)=TIP
PRINT CUMMENTS NO ADDITIONAL VALUES PNOSSIBLE,BUBBLE WALL HAS
NOT PROGRESSED FAR ENQUGH.S$
OR WHENEVER FLAG +G. 1 .AND. K .GE. FLAG
PRINT FORMAT QUTPLURV(Ks241) yURVIK3,531)4URV{Ky4ysl) URVIK,S,1)
THROUGH PRT3,F0OR L=K~1y~1lyL.Lel
WHENEVER L .L. FLAG
TIP=URVI{Ls1y1)
URVIL,1,1)=C0
FLGT=134.+URVIK,1,1}-TiP
WHENEVER FLGT .Ga URVI{Lylye4::)s TRANSFER TO PRT3
THROUGH PRT4,FOR M=241,M .G. 5
PTIM)=TAB.(FLGT URVILs1e1)3URVILYMy1)s1l,141,4%,SWI(M))
WHENEVER SW(M) E, 2.,PT{M)=C,
CONTINUE
UR WHENEVER L «GE. FLAG
TiIP=URVI{L,1,1)
URVILy1l,s1)=0.
WHENEVER URVI(K 191)-TIP.G.URVIL,1,42),TRANSFER TO PR13
THROUGH PRTS5,FOR M=2,1,M .G. 5
PTIM)=TAB. (URVIKy1lyl)=TIP,URVIL 13 1) 3URV(L ) My1)slylelyeysCyeSHI(M
))
WHENEVER SW(M) .E. 2.sPT{M)=C.
CONTINUE
END OF CONDITIONAL
PRINT FORMAT QUTP,PT{2)...PT(5)
URVILqs1l,1)=TIP
PRINT COMMENTS NO ADDITIONAL VALULS POSSIBLE,BUBBLE WALL HAS
NOT PROGRESSED FAR ENDUGH.$
END OF CONDITIONAL
CONTINUE
THROUGH PRT7,FOR ADDTL=.C N 1#URV(J=191491)5.00C1%URV(JI-1y141),
ADDTL.Ge «07055#URVIJ=141,41)
PRINT FORMAT TABHD3,URV{J-1,1,1)+ADDTL,3.0
THROUGH PRT8,FOR L=J-19-1o.L .L. 1
WHENEVER L .L. FLAG
TIP=URVI(L,y1,1)
URVIL,l,yl)=t.n
FLGT=134.+URV(J-1,1,1)+ADDTL-TIP
WHENCVER FLGT .G. URVI(Ls1,42),TRANSFER TO PRTS8
THROUGH PRT9,FUR M=2,1,M .G. 5
PTI{M)=TAB.(FLGTyURVILy1s1)yURVILsMy1l)slelelséusSWIM))
WHENEVER SW(M) JE. 2.4PT(M)=0.
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CONTINUE
OR WHENEVER L .GE. FLAG
TIP=URV(Lyly1)
URVILy1y1)=5a0
WHENCVER URV(J=1,1,1)+ADDTL-TIP.GURV(L,y1+40),TRANSFER TO PRT
3
THROUGH PRT17,FOR M=2,1,M .G. 5
PT{M)=TAB. (URV{J-1491,1)+A0DTL=-TIP,URV(Ls1ls1),URVILyMy1),y1,1,1
2404y SWIM))
WHENEVER SWI(M) .E. 2.9PTI(M)=C,
CONTINUE
END OF CONDITIONAL
PRINT FORMAT OQUTP4PT(2)...PT(5)
URVIL, 1, 1)=TIP
PRINT COMMENT$% NO ADDITIONAL VALUES POSSIBLE,BUBBLE WALL HAS
NOT PROGRESSED FAR ENOUGH.$
CONTINUE
TRANSFER TO NEW
CONTINUE
PRINT FORMAT QUT2
EXECuTc PRS.
EXECUTE CHARAC.
TAGl=1
TAG2=1
TAG3=1
TEN=1.
M=1
TEMY1l=Y (1)
TEMY2=Y(2)
TEMR=R
DELR==R/(10OC.#TEN)
Y(1l)=TEMY1
Y(2)=TEMY2
R=TEMR
DELR==R/(10Z2.#TEN)
TRANSFER TO FRST(RKDEQ.(J))
CONTINUE
Pl=PINF.{R,yX)+B
RHOINF=(P1/(B+1.)).P.EX3
CINFSQ=(N=P1)/(RHUINF#*K1)
P=PINT.(RyAyGAMMA) (2. #K25SIGMA+4,#K3x=Y (1) «2MU) /R
WHENEVER P.L.=3320,
M=5
TRANSFER TO FINISH
END OF CONDITIONAL
C=SQRTL{CINFSQu((P+B)/P1).P.EX])
H1=(P1/(KL1#EX1#RHOINF) )= (((P+B)/Pl).P.EX1-1.)
FOLI=(((Y(1)/2)2(Y(1)=3.2C)+(HL/ZY(1))=(Y{(L1)+C))/7(C-Y(L)}+((P
1/(P+B) ) P EX3/{K1#CeRHOINF) ) # (R#DPINT. (RyA,GAMMA) +PINT.(RyA,
GAMMA)=P) )/ (R+{4.#K4*MU/ (C*RHOINF) )= (PL/(P+B)).P.EX3)
F{2)=1./Y(1)
TRANSFER TO SLOC(RKDEQ.(3))
WHENEVER Y(1)eGelo
Y(l)=0.
TAG3=2
END OF CONDITIONAL
P1=PINF.(R,X)+B
RHOINF=(P1/(B+1l.)).P.EX3
CINFSQ=(N«#P1)/(RHOINF#*K1)
P=PIMT(Ry Ay GAMMA) ~{ 2, #K2*SIGMA+4 . #K32Y (1) #MU) /R
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WHENEVER P.L.-3GC2.
M=5
TRANSFER TO FINISH
END OF CONDITIONAL
C=SQRT.{CINFSQ«({P+B)/Pl).P.EX1)
H1=(P1l/ (K1#EX1#RHOINF) )% ({(P+B)/P1l)eP.EX1-1.)
FIL)=({(Y(1)/2.)%{Y(1)=-3.«C)+(HL/Y(1))®(Y(1)+C))/(C-Y(L))+((P
1/7(P+8)).P.EX3/(K1¢C#RHOINF) )# (R#DPINT. (RyAyGAMMA) +PINT.(RyA,
GAMMA)-P)) /(R4 (4, #K4uMU/ (C#RHOINF) )= (PL/(P+B)).P.EX3)
F(2)=1./7Y(1)
TRANSFER TO SLOC(3)
WHENEVER Y{1).G«0eyTAG3=2
WHENEVER TAG3.E.2
TEN=TEN#1C.
WHENEVER TEN .G.l.E25
PRINT RESULTS TEN,R,DELR,Y(1),Y(2)
M=5
TRANSFER TO FINISH
END OF CONDITIONAL
TAG3=1
TRANSFER TO SLOC(4)
END OF CONDITIONAL
WHENEVER TAGl.L.1lQ
TAG1=TAGl+1
OR WHENEVER TAGl.E.1lO
EXECUTE PRS.
TAGl=1
TAG2=TAG2+]
END OF CONDITIONAL
WHENEVER R.LE.1l.E-6
EXECUTE PRS.
M=5
TRANSFER TO FINISH
END OF CONDITIONAL
WHENEVER TAGl.E.l.AMD.TAG2.L.12.AND.J.L.98
EXECUTE CHARAC.
OR WHENEVER TAG2.E.M.AND.J.L.98
EXECUTE CHARAC.
M=M+15
END OF CONDITIONAL
WHENEVER TAG2.LE.3u0
TRANSFER TO SLOC(6)
OR WHENEVER TAG2.G.3CD
M=5
TRANSFER TO FINISH
END OF CONDITIONAL
INTEGER TAGL,TAG2,TAG3+15JsKsLsMyFLAG,O
DIMENSION Y(2),F(2),Q(2),V(2),SULLTG)»SRI1GC)»ST(100),SHI1CC)
s SPL1D0),SC(1Q0)
DIMENSION URV{194¢0,DIM(1)),DIM{4)
DIMENSION SW(5),PT{5)
DIMENSION TIM(1CD)
VECTOR VALUES TABHD1=$1H1,59,92HSOLUTION OF GILMORE®'S BUBBLE
WALL MOTION FOR COMPRESSIBLE,VISCDUS WATER WITH SURFACE TENSI
ON/1HJ 4S9, 36HTHE NORMALIZED LIQUID PARAMETERS ARE/1H0,5S2C,25H
VISCOSITY MU =91E15.6,/1H ,S20,25HSURFACE TENSION
SIGMA=,1E15.6/1H ,52G,25HPRESS. AT INFINITY PINF=,1E15.6/
1H ,520,25HINITIAL RADIUS (MILS) RO=,1E15.6/1H ,520,25HDENSIT
Y AT INF. RHOINF=¢+1E15,.6%%
VECTOR VALUES TABHD2=$1H-4S744HR/R0O+S9,8HMACH NU.,S7,8HVELOCI
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TY,S8,5H0U/DR,S9 44HTIME,S511,8HPRESSURE ST 48HENTHALPY,S6,8HIN
T.PRS49S9ySHPINF.*$
VECTOR VALUES TABHD3=$1H1,S3,72HPRESSURE AND VELOCITY FIELDS
IN THE LIQUID WHEN THE NORMALIZED TIME IS,1E15.8,26H AND THE
BUBBLE RADIUS 1Sy1E13.6/1H-+S12,14HLIQ. RADIUS/RO,S3,12HLIQU
ID PRES.»S2,13HLIQ. VELOCITY,SS5,8HMACH NO.»s
VECTOR VALUES TABHD4=$%1H1,S3,8CHPATH OF A CHARACTERISTIC STAR
TING FROM THE BUBBLE WALL WHEN THE BUBBLE RADIUS IS,E17.8/1H-
9S11,14HLIQ. RADIUS/RO,S4y12HLIQUID PRES.+S2,13HLIQ. VELODCITY
9553 BHMACH N0 <9yS9,4HTIME,S1-,10HDELTA TIME=S
VECTOR VALUES OUT1=%1H 4E14.693E15.69E15.833E15.63E12.5%$%
VECTOR VALUES QUT2=$1HD*$
VECTOR VALUES OUT3=$%$1H /1H ,S10,2HM=,13,5HDELR=yE13.6/%%
VECTOR VALUES OUTP=$1H ,58,E15.8,3E15.6#%
VECTOR VALUES OUTCH=$1H 4S1C,E15.843E15.6,E17.84E15.6%%$
INTERNAL FUNCTION
ENTRY TO CHARAC.
SUtJd)=yYI(1)
SH{J)=H1
SR(J)=R
SP(J)=p
SCtJy=C
WHENEVER J.L. 83
ST(J)=Y(2)
TIM(J)=ST(J)
OR WHENEVER J.GE.80
TIP=(R~SR{J-1))/Y(1)
TIM(J)=TIP
THROUGH TIPPD,FOR 0=J-1,-1,0.L.79
TIP=TIP+TIM(O)
CONTINUE
ST(J)=TIP
END OF CONDITIONAL
J=J+1
FUNCTION RETURN
END OF FUNCTION
INTERNAL FUNCTION
ENTRY TO PRS.
WHENEVER Y(2) .G. 134.
Y(2)=Y(2)-134.
FLAG=J
END OF CONDITIONAL
P1=PINF.{R,X)+B
RHOINF=(P1/(B+1.)).P.EX3
CINFSQ={N=#P1)/{RHOINF=K1)
P=PINT.(RyAyGAMMA)~{2.5K2%SIGMA+4,.#K3#Y (1) =MU) /R
Hl=(P1/(K1+EXL*RHOINF))#{((P+B)/Pl).P.EX1-1.)
C=SQRT.(CINFSQx((P+B8)/P1l).P.EX]1)
FIL)=0({Y(1)}/2.)#{Y(1)=3.#C)+(HL/Y(L))=(Y{LI+C))/{C-Y(L1 D)+ (P
17(P+B) ) P.EX3/(K1#C#RHOINF))* (R#DPINT.{(RyAyGAMMA)+PINT.{RyA,
GAMMA)-P) ) /(R+{4.#K4#MU/ (CoRHOINF) )= (P1l/(P+B)).P.EX3)
WHENEVER R .G« .99E-4
PRINT FORMAT OUTL4RyY(1)/CyY(1)4F(1),Y(2),PyHL,PINT.{RyAyGAMM
A) 3 PINF.{R,yX)
OR WHENEVER R +Le. +99E~-%
PRINT FORMAT OUT1sRsY{1)/CyY(1)yF(1l)s{R=-SR(J=1))I/Y(1)4P,4H1,PI
NT. (RyAyGAMMA) ,PINF.(RyX)
END OF CONDITIONAL
FUNCTION RETURN
END OF FUNCTION




INTERNAL FUNCTION (K,TAG2) «489
ENTRY TD STURV. .490
WHENEVER TAG2.E. 1,URVIK,1,TAG2)=ST(K) YY)}
WHENEVER TAG2 .G. 1 URVIK,1,TAG2)=TL 492
URVIK2+TAG2)=V(2) 2493
URV{K¢3,TAG2)=PL 0494
URVIK» 4, TAG2)=V(1) »495
URV(Ks5,TAG2)=V(1L/CL 496
FUNCTION RETURN 497
END OF FUNCTION *498
END OF PROGRAM “499

THE FOLLOWING NAMES HAVE OCCURRED ONLY ONCE IN THIS PROGRAM.
COMPILATION WILL CONTINUE.

EX2

THE FIRST OCCURRENCE OF A FLOATING POINT VARIABLE USED AS A SINGLE OR DOUBLE SUBSCRIPT WAS IN THE STATEMENT ENDING
GO TRANSFER TO LOC(RKDEQ.(Q)) 069
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$COMPILE MAD,PRINT OBJECT,PUNCH OBJECT

MAD (24 SEP 1964 VERSION) PROGRAM LISTING see eoe oo

EXTERNAL FUNCTION(R,A,GAMMA)

ENTRY TO PINT.

FUNCTION RETURN A#(R.P.{-3#GAMMA))

ENTRY TO DPINT.

FUNCTION RETURN -3.2GAMMA#A/(R.P.(3.#GAMMA+1.))
END OF FUNCTION
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$COMPILE MAD,PRINT OBJECT,PUNCH OBJECT

MAD (24 SEP 1964 VERSIUON) PROGRAM LISTING ...

EXTERNAL FUNCTION(R,X)}
ENTRY TO PINF.
FUNCTION RETURN X

END OF FUNCTION
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